
Jan 25, 2017 Version 3

Creating BLAST app for Cyverse V.3

DOI

dx.doi.org/10.17504/protocols.io.g27byhn

Ken Youens-Clark
University of Arizona

DOI: dx.doi.org/10.17504/protocols.io.g27byhn

Protocol Citation: Ken Youens-Clark: Creating BLAST app for Cyverse. protocols.io

https://dx.doi.org/10.17504/protocols.io.g27byhn

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: January 25, 2017

Last Modified: March 14, 2018

Protocol Integer ID: 4927

Abstract

How I created a BLAST app for Cyverse.

protocols.io | https://dx.doi.org/10.17504/protocols.io.g27byhn January 25, 2017 1/4

https://dx.doi.org/10.17504/protocols.io.g27byhn
https://www.protocols.io/researchers/ken-youensclark
https://www.protocols.io/researchers/ken-youensclark
https://www.protocols.io/researchers/ken-youensclark
https://dx.doi.org/10.17504/protocols.io.g27byhn
https://dx.doi.org/10.17504/protocols.io.g27byhn
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.17504/protocols.io.g27byhn

1 If you haven't already, install the Cyverse SDK (https://github.com/cyverse/cyverse-sdk)

so you have access to "jobs-submit" and such.

2 I created https://github.com/hurwitzlab/muscope-blast to hold the code for the

Stampede/Cyverse app.

Stampede apps are recommended (http://developer.agaveapi.co/) to have a 'stampede'

directory for the code -- perhaps a different dir for each execution system?

I also created https://github.com/hurwitzlab/ohana for the code to build the BLAST dbs

and such.

3 I pulled down the HOT from Cyverse Data Store at

/iplant/home/scope/data/delong/HOT224-238.

To ensure I had everything, I ran

https://github.com/hurwitzlab/ohana/blob/master/scripts/check-md5.pl6 to check

against MD5 sums.

I wrote https://github.com/hurwitzlab/ohana/blob/master/scripts/mk-blast.sh to

concatenate all contigs/genes/proteins files into one per type, then index with BLAST.

4 The original Eggnog annotations to the predicted genes were delivered in a format that

spread one annotation over two lines, so I wrote

https://github.com/hurwitzlab/ohana/blob/master/scripts/merge-genes.pl6 to merge

them. As there were 15M annotations, I struggled over how to store and retrieve them. I

wanted a database like MySQL or Pg, but it's unlikely I could bring up a daemon-based

server on stampede, so I chose SQLite. Problem there is I was quite certain it would be

too slow to put 15M in one table, so I decided to make a db for each sample (103 of

them). The script https://github.com/hurwitzlab/ohana/blob/master/scripts/pyloader.py

will load the dbs.

Install Cyverse SDK

Create Github repo

Create the BLAST dbs

Load Eggnog annotation dbs

Create entry script

protocols.io | https://dx.doi.org/10.17504/protocols.io.g27byhn January 25, 2017 2/4

https://github.com/cyverse/cyverse-sdk
https://github.com/hurwitzlab/muscope-blast
http://developer.agaveapi.co/
https://github.com/hurwitzlab/ohana
https://github.com/hurwitzlab/ohana/blob/master/scripts/check-md5.pl6
https://github.com/hurwitzlab/ohana/blob/master/scripts/mk-blast.sh
https://github.com/hurwitzlab/ohana/blob/master/scripts/merge-genes.pl6
https://github.com/hurwitzlab/ohana/blob/master/scripts/pyloader.py
https://dx.doi.org/10.17504/protocols.io.g27byhn

5 This can be any language or executable, but I tend to write these in bash. I often call

mine 'run.sh' (https://github.com/hurwitzlab/muscope-

blast/blob/master/stampede/run.sh) and base it off a template

(https://github.com/kyclark/metagenomics-book/blob/master/bash/basic.sh) that

accepts named arguments. This script will query the input file(s) to the BLAST dbs and

then use any resulting hits to predicted genes to query SQLite for annotations which will

be placed into an additional file.

6 The https://github.com/hurwitzlab/muscope-blast/blob/master/stampede/test.sh is for

testing that the app is able to be submitted (via 'sbatch') to SLURM and will run.

7 The https://github.com/hurwitzlab/muscope-blast/blob/master/stampede/app.json file

describes the app to Agave so it can be registered. It's most important to define the

'inputs' and 'parameters' with argument names that you will reference via environmental

variables in the 'template.sh' script.

8 The https://github.com/hurwitzlab/muscope-blast/blob/master/stampede/template.sh

script will take the arguments from Cyverse as environmental variables defined in your

'app.json''s inputs/parameters. I usually just have this pass the arguments to 'run.sh'.

9 Use 'files-upload' to put the app/scripts onto the storage (execution?) system. There is

an 'upload' target in the Makefile for this. If you change just one file, you can upload that

one e.g.

$ files-upload -F run.sh kyclark/applications/muscope-blast-0.0.2/stampede

Anytime you change your code, test it locally and then "files-upload" the changes into

Cyverse.

10 Run "apps-addupdate -F app.json" to register the app with Agave.

Create "test.sh"

Create "app.json"

Create "template.sh"

"files-upload" assets to execution system

Register the app with "apps-addupdate"

protocols.io | https://dx.doi.org/10.17504/protocols.io.g27byhn January 25, 2017 3/4

https://github.com/hurwitzlab/muscope-blast/blob/master/stampede/run.sh
https://github.com/hurwitzlab/muscope-blast/blob/master/stampede/run.sh
https://github.com/kyclark/metagenomics-book/blob/master/bash/basic.sh
https://github.com/hurwitzlab/muscope-blast/blob/master/stampede/test.sh
https://github.com/hurwitzlab/muscope-blast/blob/master/stampede/app.jso
https://github.com/hurwitzlab/muscope-blast/blob/master/stampede/template.sh
https://dx.doi.org/10.17504/protocols.io.g27byhn

11 Run "jobs-template $APP > job.json" (e.g, just run "make jobs-template") to generate a

JSON template for submitting the job via the Agave API.

12 Use 'jobs-submit -F job.json' (or 'make jobs-submit') to test if it will submit. Use 'jobs-

list | head' to see the status. Your job will be the top one and will start off like 'PENDING'

and then 'STAGING,' 'QUEUED,' 'RUNNING,' and then 'FAILED' or 'FINISHED.' Using the

job ID (e.g., '5905387002803589606-242ac114-0001-007') with 'jobs-status' and 'jobs-

history,' you can find out more about what it is doing, possibly where it is failing. When it

is done, you can use 'jobs-output' to see what was created.

The results will land in your "$WORK/<userid>/job-<jobid>-<jobname>" directory.

13 Use https://de.cyverse.org/de/ to find the job and submit there.

Create "job.json"

Submit "job.json"

Submit job via DE

protocols.io | https://dx.doi.org/10.17504/protocols.io.g27byhn January 25, 2017 4/4

https://dx.doi.org/10.17504/protocols.io.g27byhn

