


Mar 27, 2024

CMT-93 Cell Culture Protocol

DOI

dx.doi.org/10.17504/protocols.io.bp2l62k1dgqe/v1

Laura Gómez¹

¹CBM Severo Ochoa

Laura Gómez

CBM Severo Ochoa

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.bp2l62k1dgqe/v1

External link: https://www.atcc.org/products/ccl-223

Protocol Citation: Laura Gómez 2024. CMT-93 Cell Culture Protocol. protocols.io

https://dx.doi.org/10.17504/protocols.io.bp2l62k1dgqe/v1

Manuscript citation:

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development

We are still developing and optimizing this protocol

Created: March 18, 2024

Last Modified: March 27, 2024

Protocol Integer ID: 96872

Keywords: CMT-93, cell line, epithelial cell line, polyploid carcinoma, cell culture, epithelial morphology, exhibiting epithelial morphology, cell line, rectum, cell

Abstract

CMT-93 is a cell line exhibiting epithelial morphology that was isolated from the rectum of a mouse with polyploid carcinoma.

Image Attribution

ATCC - https://www.atcc.org/products/ccl-223

Guidelines

Working with cell cultures requires a laminar flow cabinet. It has to be radiated with UV light, cleaned with any highly effective terminal disinfectant (such as Tego® 2000 or Suredis®) and 70% ethanol. All material introduced into the cabinet must also be sprayed with ethanol.

Once the work is finished, we must clean the cabinet with the detergent, then with 70% etOH and turn on the UV light for 30 min.

Materials

Plasticware:

p60 cell culture plates p100 cell culture plates Cell culture flasks, 75 cm², treated for cell attachment. 15 and 50 mL centrifuge tubes Cryovials

To prepare the complete medium:

DMEM 1X Fetal bovine serum heat inactivated (FBS) Glutamine 200 mM

To subculture the cells:

Trypsin-EDTA PBS 1X

Troubleshooting

Safety warnings

Every reagent must be sterile in order to avoid contaminations.

Before start

Clean and prepare the laminar flow cabinet, turn on the water bath and warm up the culture media.

Preparation of complete growth medium (DMEM+)

- 1 Add ∠ 445 mL 1X DMEM, ∠ 50 mL FBS and ∠ 5 mL glutamine

 [M] 200 millimolar (mM) to a sterile 500 mL bottle and homogenize
- 2 Label the bottle with name, group, phone number, date and additions.
- 3 Close with parafilm and store at $4 \circ C$.

Cell thawing procedure

- Remove one vial of cell stock from the liquid nitrogen tank with gloves and forceps.

 Transfer them to the cell culture laboratory in an appropriate container or a box with ice.
- Thaw the vial by gently shaking it in a 37 °C water bath. Thawing should be rapid (approximately 2 min).
- Remove the vial from the water bath as soon as the contents are thawed, and decontaminate by dipping in or spraying with 70% ethanol
- 7 Transfer the contents of the vial to a centrifuge tube containing 4 9 mL of complete culture medium and 4 1200 rpm, Room temperature, 00:05:00
- 8 Resuspend with 4 10 mL DMEM+ and distribute on 2 P60 plates.
- 9 Incubate cultures at \$\mathbb{s} 37 \cdot \cdot \, 5\% CO_2 \leftright Overnight

5m

5m

Subculturing procedure

10 Remove and discard culture medium.

- 11 Rinse with PBS 1X solution and discard
- Briefly rinse the cell layer with 0.25% (w/v) Trypsin-0.53mM EDTA solution to remove all traces of serum which contains trypsin inhibitor. Discard.
- Add <u>A 2 mL</u> of Trypsin-EDTA solution to flask and incubate 00:10:00 at 37 °C to facilitate detachment from the plate.

10m

Note

To avoid clumping, **do not agitate** the cells by hitting or shaking the flask while waiting for the cells to detach.

14 Observe cells under an inverted microscope until cell layer is dispersed.

Note

If the cells are not detached already, incubate 00:05:00 more at 37 °C.

Add 45 mL of DMEM+ and aspirate cells by **gently** pipetting. Pour the existing volume down the walls of the flask in order to drag and collect as many cells as possible.

16 Collect the cell suspension in a centrifugue tube and

- (£) 1200 rpm, Room temperature, 00:05:00 .
- 17 Discard the supernatant into a beaker with 70% EtOH or 10% bleach.
- Resuspend in medium according to the dilution to be made.

Note

A subcultivation ratio of 1:4 to 1:10 is recommended

- 20 Incubate cultures at \$\mathbb{s}\$ 37 °C , 5% CO₂ Overnight

5m

Cryopreservation and storage procedure

- 21 Repeat steps of *Subculturing procedure* until the "Resuspend in medium according to the dilution to be made" step.
- Resuspend in medium taking into account that for every p100 we can storage up to 2 cryovials of cells, containing 4 1 mL.
- 23 Prepare the cryovials with $\stackrel{\blacksquare}{_}$ 50 μL DMSO.
- 24 Add \perp 950 µL of the cell suspension to every cryovial.
- Label the cryovials with cell line, passage, date and lab number or phone number.
- 26 Store the cryovials in a slow freezing container at \$\mathbb{8} -80 \cdot \cdot \text{for } \cdot 24:00:00 \text{ .}

1d

27 Transfer the cryovials to the liquid nitrogen tank.

Protocol references

https://www.atcc.org/products/ccl-223#detailed-product-information