

Apr 30, 2018

Version 1

© Chemically competent *V. natriegens* cells V.1

DOI

dx.doi.org/10.17504/protocols.io.pskdncw

Carlos H¹

¹iGEM Marburg 2018

Carlos H

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.pskdncw

Protocol Citation: Carlos H 2018. Chemically competent V. natriegens cells. protocols.io

https://dx.doi.org/10.17504/protocols.io.pskdncw

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development

We are still developing and optimizing this protocol

Created: April 26, 2018

Last Modified: April 30, 2018

Protocol Integer ID: 11820

Keywords: vibrio natriegens cell, vibrio natriegen, cell

Abstract

This protocol describes how to make chemically competent *Vibrio natriegens* cells.

The protocol was described and published by Weinstock et al., 2016

Guidelines

All steps are done at room temperature (RT).

This protocol was published by Weinstock et al., 1016

Materials

MATERIALS

X PIPES **P212121**

Potassium chloride P212121

Sodium Chloride Fisher Scientific Catalog #S271

Magnesium Chloride Fisher Scientific Catalog #AC223210010

Manganese chloride Fisher Scientific Catalog #7773-01-5

🔯 brain Heart Infusion Broth Catalog #Oxoid CM1135-UK

Calcium chloride, dihydrate **Bio Basic Inc. Catalog #**CD0050.SIZE.500g

Troubleshooting

Before start

Make sure you have all solutions there:

- Brain heart infusion + V₂-Salts
- V2-Salts
- NaCl 204mM (58.44g/mol) → 11.92176g for 200ml

■ KCI 4,2mM (74.55g/mol) →0,31311g for 200ml

■ MgCl₂ 23,14mM (203.3g/mol) \rightarrow 7.704362g for 200ml

- $MgCl_2 \times 2H_2O 100$ mM (203.3g/mol) \rightarrow 0.10165g for 200ml
- CaCl₂ x 2H₂O 100mM (147.02g/mol) → 2.9404g for 200ml
- Modified Inoue buffer
- $MnCl_2 \times 2H_2O 55mM (161.87g/mol) \rightarrow 1.78057g for 200ml$

■ $CaCl_2 \times 2H_2O 15mM (147.02g/mol) \rightarrow 0.44106g for 200ml$

■ KCl 250mM (75.55g/mol) → 3.7275g for 200ml

PIPES 10mM (302.37g/mol) → 4ml (from 0.5M stock solution) for 200ml

- **PIPES** 500mM (302.37g/mol) \rightarrow 7.55925g in 50ml (adjust pH 6.7)
- DMSO

- 1 Inoculate 150ml BHI + V2-Salts in a buffled flask
- 2 Incubate shaking: OD = 0.4, 30°C, 200rpm
 - **3**0 °C
 - © 02:30:00 Competent V. natriegens
- 3 Split into three 50ml falcons
- 4 Centrifuge: 3000g, 5min, RT
 - 00:05:00 1. Centrifuge competent V. natriegens
- 5 Remove supernatant completely
- 6 Resuspend by gently inversion in 5ml 100mM MgCl₂
- 7 Pool the cells in two 50ml falcons
- 8 Fill up to 30ml with 100mM MgCl₂
- 9 Centrifuge: 3000g, 4min, RT
 - ♦ 00:04:00 2. Centrifuge competent V. natriegens
- 10 Remove supernatant completely
- 11 Resuspend the pellet by gently inversion in 5ml 100mM CaCl₂
- 12 Pool the cells into one 50ml falcon
- 13 Fill up to 30ml with 100mM CaCl₂

- 14 Incubate: 20min, RT
 - 00:20:00 Incubation competent V. natriegens
- 15 Centrifuge: 3000g, 4min, RT
 - 00:04:00 3. Centrifuge competent V. natriegens
- 16 Remove supernatant completely
- 17 Resuspend the pellet by gently invertion in 1.5ml modified Inoue buffer
- 18 Add DMSO to a volume concentration of 7% (=105µl)
- 19 Aliquot the cells into chilled tubes (50µl aliquots)
- 20 Freeze at -80°C