
Nov 02, 2019

Forked from <u>Cell lysis, detergent-free</u>

DOI

dx.doi.org/10.17504/protocols.io.y4ffytn

Teesha C Luehr¹

¹University of British Columbia

Leonard Foster's Lab

Teesha C Luehr

University of British Columbia

DOI: <u>dx.doi.org/10.17504/protocols.io.y4ffytn</u>

Protocol Citation: Teesha C Luehr 2019. Cell lysis, detergent-free. protocols.io <u>https://dx.doi.org/10.17504/protocols.io.y4ffytn</u>

Manuscript citation: https://doi.org/10.1074/mcp.M114.047407

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: March 13, 2019

Last Modified: November 02, 2019

Protocol Integer ID: 21351

Abstract

Detergents are generally not compatible with mass spectrometers, so this is a detergent-free method of cell lysis that is compatible with mass spectrometry. Since this protocol does not have a precipitation step, it saves time and minimizes sample loss as well.

Growing Cells

- 1 Culture HeLa cells in Dulbecco's modified Eagle's medium (DMEM) containing 10% FBS, 20mM glutamine, and 1% PenStrep.
- Original protocol uses 5×10⁷ cells per sample. Use 2×10⁷ cells. Use one 15cm Petri dish or 2-3 10 cm dishes. Each 10cm dish gives 8.8×10⁶ cells.

Preparing Solutions and Materials Needed

3 Ice Bucket

4

[M] 2 Molarity (M) tris at pH 8.5

Add 🛽 1.211 g tris-base and 🖉 243 µL concentrated HCI (37%) up to a total of

 $\stackrel{\text{\tiny }}{=} 5 \text{ mL}$ in Milli-Q water

Note

Calculations done with https://www.cytographica.com/lab/HHTris.html.

Note

Tris-base is in NCE 438 chemical room on the top right doubles shelf

Note

A stock conical tube of [M] 2 Molarity (M) tris is stored on the bench.

5

[M] 100 millimolar (mM) TCEP

Add 4 250.187 mg tris(2-carboethyl)phosphine to 4 10 mL Milli-Q water

	Note
	TCEP is located in NCE 436 -20C freezer door (currently the top shelf)
	Note
	405 μL aliquots of [M] 100 millimolar (mM) TCEP have been made and are stored in Teesha's -20 °C storage box
6	[M] 400 Molarity (M) CAA
	Add A 374.04 mg 2-chloroacetamide to A 10 mL Milli-Q water
	Note
	CAA is located in NCE 438 chemical room on the "C" shelf
	Note
	A 405 μL aliquots of [M] 400 millimolar (mM) CAA have been made and are stored in Teesha's -20 °C storage box
7	™I 50 millimolar (mM) NH4HCO3
	Add $\underline{\square}$ 197.4 mg ammonium bicarbonate to $\underline{\square}$ 50 mL Milli-Q water
	Note
	Upscale or downscale volume needed. Up to 15 mL will be used for each replicate.
8	95 °C heating block

Pell	et Cells
9	Using a 📕 15 mL conical tube pellet cells for 👏 00:05:00 at 300 g
	Note
	Pellet in a tube a minimum size of 🛛 🗛 15 mL as this tube will be used through till the end of digestion.
10	Wash cells with 🕹 10 mL cold PBS
11	Pellet cells for 👀 00:05:00 at 300 g
12	Carefully discard supernatant
13	Store cell pellet on ice
	Note
	If not performing cell lysis immediately, the pellet can be stored at -80 °C until further use.

Cell Lysis

14 Resuspend the cell pellet(s) in 👗 1.5 mL ice cold Milli-Q water

Note

Perform the lysis and digestion in the 📕 15 mL conical tube . The lysis volumes, sonification, and digestion require the larger tube volume.

15	Add 🕹 1.5 mL trifluoroethanol
	Safety information
	This step should be done in the fume hood.
	Note
	1:1 water-TFE acts as a hypotonic aqueous buffer to lyse cells, eliminating the need for detergent. TFE helps protein solubility and denaturation; it readily evaporates, so removing it is easy.
	Note
	TFE is located in the NCE 435 flammable cabinet.
	Note
	TFE evaporates fast, so work quickly.
16	Cool for 🕥 00:10:00 on ice
17	Mix the sample for 👀 00:01:00 with a vortex
18	Sonicate the sample for $\bigcirc 00:02:00$ with the Branson Digital Sonifier 250 at 30% amplitude in pulse mode (pulse ON for 0.2s and pulse OFF for 0.8s) with the tapered micro tip probe.
	Note
	The Branson Sonifier is the cell distrupter of choice, however, the bench top water bath

sonicator can be used for 10 minutes.

Reduction & Alkylation		
19	Add 200 µL 2M tris for a final concentration of [M] 100 millimolar (mM)	
20	Mix the sample for 👀 00:00:05 with a vortex	
21	Add 400 µL 100 mM TCEP for a final concentration of [M] 10 millimolar (mM)	
22	Mix the sample for 00:00:05 with a vortex	
23	Add 400 µL 400 mM CAA for a final concentration of [M] 40 millimolar (mM)	
24	Mix the sample for 👀 00:00:05 with a vortex	
25	Incubate in the heating block for 👀 00:10:00 at 🛿 95 °C	
LysC	Digestion	
26	Dilute the sample to a total of 🗸 15 mL 50mM NaHCO3	
	Note	
	This is performed to dilute the TFE.	
27	Measure the protein concentration with a NanoDrop (using SCOPES A205 Protein)	

28 Calculate the total amount of protein that is desired to carry forward with the experiment. Keeping in mind that the final peptide concentration will be approximately 10-50% of the

	protein concentration at this step. Transfer this volume to a new tube. If small enough, transfer to a 🗕 2 mL lo-bind tube .
29	Calculate how much LysC is needed for a 🗸 1 µg LysC : 🗸 100 µg protein
30	Add the calculated amount of LysC to the sample
	Note
	LysC is in the 📲 -80 °C freezer
31	Incubate for 😢 02:00:00 at 🖁 37 °C in the digestion incubator
Try	osin Digestion
32	Calculate how much trypsin is needed for a 🛛 4 μg trypsin : 🕹 100 μg protein
33	Add the calculated amount of trypsin to the sample
	Note
	Trypsin is in NCE 435 -20 freezer in the door, bottom shelf
34	Incubate for a minimum of 16:00:00 at 37 °C in the digestion incubator
Sec	ond Trypsin Digestion
35	Calculate how much trypsin is needed for a \square 1 µg trypsin : \square 100 µg protein
	Note
	A second trypsin digestion is optional. User digression is advised.

36 Add the trypsin to the sample

37 Incubate for 😒 05:00:00 at 🖁 37 °C in the digestion incubator

STAGE Tip

38 Proceed to the STAGE tip protocol