May 09, 2019

Case - Glycerol and Glucose Assays by GC-mass spectrometry

DOI

dx.doi.org/10.17504/protocols.io.ydkfs4w

Henri Brunengraber¹

¹Case Western Reserve University

Mouse Metabolic Pheno... Metabolomics Protocols ...

Lili Liang

DOI: <u>dx.doi.org/10.17504/protocols.io.ydkfs4w</u>

External link: https://mmpc.org/shared/document.aspx?id=273&docType=Protocol

Protocol Citation: Henri Brunengraber 2019. Case - Glycerol and Glucose Assays by GC-mass spectrometry. protocols.io. https://dx.doi.org/10.17504/protocols.io.ydkfs4w

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: February 21, 2019

Last Modified: May 09, 2019

Protocol Integer ID: 20620

Keywords: Glucose, GC-mass spectrometry

Abstract

Summary:

Total glycerol is determined by first hydrolyzing glycerides (in plasma or tissues) in 1 N KOHethanol + heat and then the hydrolysate extracted following acidification ~pH 1.0. A two phase extract is created using chloroform. The aqueous phase contains the total glycerol and the organic phase contains total fatty acids. An aliquot of aqueous phase in dried down by nitrogen gas and the concentration and/or ²H-labelled glycerol is then determined by GC-MS following conversion of glycerol to its triacetate derivative.

Glucose assay involves extraction of glucose from blood, plasma or tissues and the concentration and/or ²H/¹³Clabelled glucose is also determined by GC-MS following conversion to its pentaacetate derivative. Since the derivatizing methods are the same for glucose as glycerol, the can be assayed from a single sample preparation under the same GC-MS conditions and single run-time.

References:

1. Triglyceride synthesis in epididymal adipose tissue: contribution of glucose and non-glucose carbon sources. Bederman IR, Foy S, Chandramouli V, Alexander JC, Previs SF. J Biol Chem.;284(10):6101-8 (2009)

Materials

Total / ****Free Glycerol Assay**

Reagents/Materials:

Reagent/Material	Quantity Required	Vendor
*internal standard	20 µL [0.5 mM]	Sigma Aldrich
(IS): [² H ₅]glycerol		· · · · · · · · · · · · · · · · · · ·
HCI	50µL	stock
Chloroform	300µL	stock
Pyridine	50µL	stock
Acetic Anhydride	50µL	stock

Glucose Assay

Reagents/Materials:

Reagent/Material	Quantity Required	Vendor
Internal standard (IS): U ¹³ C or ² H labelled	10µL [5mM]	Sigma Aldrich
glucose		
Methanol	250µL	stock
Pyridine	50µL	stock
Acetic Anhydride	50µL	stock

Note:

Sigma-Aldrich, <u>RRID:SCR_008988</u>

1

Protocol:

Total / ****Free Glycerol Assay**

- 1. Place 20μ l of plasma sample or 50 mg tissue into glass, screw-top tube
- 2. Add ~20 μ l of IS [²H₅]glycerol, for concentration measurements
- 3. For total glycerol: add 200µl of KOH-EtOH (1M KOH in 70% ethanol)
- 4. Heat at 80°C for 3 hours on a heating block to hydrolyze glyceride esters
- 5. Then add 50 μl of 6N HCl
- 6. Add 300μ I of chloroform, vortex for 2 min and then transfer to Eppendorf
- 7. Centrifuge for 2 min
- 8. Remove top aqueous layer and place in test tube and dry under nitrogen gas

9. React the dry residue with 50 μ l pyridine and 50 μ l acetic anhydride (100 μ L of pyridine: acetic anhydride, 1:1) on heating block for until dry (don't over dry)

10. Then add 70 μL ethyl-acetate, as running solvent for GC-MS

- 11. Transfer to GC insert, follow GC parameters as outlined below (1)
- 12. **For free glycerol: omit steps #3,#4 and ~20 μ l 6N HCL

Glucose Assay

2

Protocol:

- 1. Place 10µl of blood sample in Eppendorf
- Add 10μl of a 1mg/ml of IS U¹³C or ²H labelled glucose for concentration
 a. may use ribose as an internal standard for ¹³C glucose labelling assays
- 3. Add 250 μl of methanol to Eppendorf
- 4. Centrifuge for ~2 minutes
- 5. Place supernatant in test tube and dry under nitrogen gas

6. React the dry residue with 50 μ l pyridine and 50 μ l acetic anhydride (100 μ L of pyridine: acetic anhydride, 1:1)

7. Heat on heating block at 80°C, until dry (do not over dry)

8. Add 70 µL ethyl-acetate, as running solvent for GC-MS

9. Transfer to GC insert, follow GC parameters as outlined below (1)

3 **GC-MS Analysis**:

glycerol and/or/ glucose derivatives are analyzed using an Agilent 5973N-MSD equipped with an Agilent 6890 GC system, and a DB-17MS capillary column (30 m x 0.25 mm x 0.25 um). The mass spectrometer is operated under ammonia chemical ionization mode ionization, and selective ion monitoring (SIM) of NH₄ adducts are performed: For glycerol- triacetate, SIM m/z 236, 237, and 238 (M_0,M_1 and M_2) and for glucose-pentaacetate, SIM, m/z 408–414 (M_0 to M_6)