Jul 14, 2024

Public workspaceCalcium chloride-mediated transformation of different Chlamydia species

  • 1University of Zurich;
  • 2University of Luebeck
Icon indicating open access to content
QR code linking to this content
Collection CitationNadja Faessler, Kensuke Shima, Hanna Marti 2024. Calcium chloride-mediated transformation of different Chlamydia species. protocols.io https://dx.doi.org/10.17504/protocols.io.kxygxy53wl8j/v1
License: This is an open access collection distributed under the terms of the Creative Commons Attribution License,  which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Protocol status: Working
We use this collection and it's working
Created: July 11, 2024
Last Modified: July 14, 2024
Collection Integer ID: 103256
Keywords: Chlamydia, Chlamydiaceae, Transformation, Calcium chloride, Transformation rate, Transformation efficiency
Funders Acknowledgements:
Swiss National Science Foundation (SNSF)
Grant ID: 323530_177579
Abstract
Summary
The genetic toolbox for the obligate intracellular bacterial species Chlamydia trachomatis and C. muridarum has rapidly expanded in recent years (Sixt and Valdivia, 2016; O’Neill et al., 2020; Fields et al., 2022), and has now extended to C. caviae, C. felis, C. pecorum, C. pneumoniae, C. psittaci and C. suis (Shima et al., 2018, 2020; Filcek et al., 2019; Marti et al., 2023; Faessler et al., In Preparation). This document comprises details for the design, construction, and transformation of various vectors into different Chlamydia species and was adapted from the original publication on calcium chloride-mediated transformation (Wang et al., 2011).
References:
Bauler, L. D., and Hackstadt, T. (2014). Expression and Targeting of secreted Proteins from Chlamydia trachomatis. Journal of Bacteriology, 196, 1325–1334. doi:10.1128/JB.01290-13
Faessler, N., Biggel, M., Jelocnik, M., Borel, N., and Marti, H. (In Preparation). Development of shuttle vector-based transformation systems for Chlamydia pecorum and Chlamydia caviae.

Fields, K. A., Bodero, M. D., Scanlon, K. R., Jewett, T. J., and Wolf, K. (2022). A Minimal Replicon Enables Efficacious, Species-Specific Gene Deletion in Chlamydia and Extension of Gene Knockout Studies to the Animal Model of Infection Using Chlamydia muridarum. Infection and Immunity 90, e00453-22. doi: 10.1128/iai.00453-22
Filcek, K., Vielfort, K., Muraleedharan, S., Henriksson, J., Valdivia, R. H., Bavoil, P. M., et al. (2019). Insertional mutagenesis in the zoonotic pathogen Chlamydia caviae. PLoS One 14, e0224324. doi: 10.1371/journal.pone.0224324
Marti, H., Biggel, M., Shima, K., Onorini, D., Rupp, J., Charette, S. J., et al. (2023). Chlamydia suis displays high transformation capacity with complete cloning vector integration into the chromosomal rrn-nqrF plasticity zone. Microbiol Spectr 11, e02378-23. doi: 10.1128/spectrum.02378-23

O’Neill, C. E., Clarke, I. N., and Fisher, D. J. (2020). “Chlamydia Genetics,” in Chlamydia Biology: From Genome to Disease, eds. M. Tan, J. H. Hegeman, and C. Sütterlin (Norfolk: Caister Academic Press), 241–262. doi: 10.21775/9781912530281.11
Shima, K., Wanker, M., Skilton, R. J., Cutcliffe, L.T., Schnee, C., Kohl, T. A., et al. (2018). The Genetic Transformation of Chlamydia pneumoniae. mSphere 3, e00412-18. doi: 10.1128/mSphere.00412-18
Shima, K., Weber, M. M., Schnee, C., Sachse, K., Käding, N., Klinger, M., et al. (2020). Development of a Plasmid Shuttle Vector System for Genetic Manipulation of Chlamydia psittaci. mSphere 5, e00787-20. doi: 10.1128/mSphere.00787-20
Sixt, B. S., and Valdivia, R. H. (2016). Molecular Genetic Analysis of Chlamydia Species. Annual Review of Microbiology 70, 179–198. doi: 10.1146/annurev-micro-102215-095539
Tam, J. E., Davis, C. H., Thresher, R. J., and Wyrick, P. B. (1992). Location of the origin of replication for the 7.5-kb Chlamydia trachomatis plasmid. Plasmid 27, 231–236. doi: 10.1016/0147-619x(92)90025-6

Wang, Y., Kahane, S., Cutcliffe, L. T., Skilton, R.J., Lambden, P. R., and Clarke, I. N. (2011). Development of a Transformation System for Chlamydia trachomatis: Restoration of Glycogen Biosynthesis by Acquisition of a Plasmid Shuttle Vector. PLoS Pathogens 7, e1002258. doi: 10.1371/journal.ppat.1002258
Before start
Before implementing this protocol in your laboratory, check the biosafety regulations of your laboratory/country.
Files
Icon representing the file Calcium chloride-mediated transformation of different Chlamydia species
Calcium chloride-mediated transformation of different Chlamydia species
Protocol references
Bauler, L. D., and Hackstadt, T. (2014). Expression and Targeting of secreted Proteins from Chlamydia trachomatis. Journal of Bacteriology, 196, 1325–1334. doi:10.1128/JB.01290-13
Faessler, N., Biggel, M., Jelocnik, M., Borel, N., and Marti, H. (In Preparation). Development of shuttle vector-based transformation systems for Chlamydia pecorum and Chlamydia caviae.

Fields, K. A., Bodero, M. D., Scanlon, K. R., Jewett, T. J., and Wolf, K. (2022). A Minimal Replicon Enables Efficacious, Species-Specific Gene Deletion in Chlamydia and Extension of Gene Knockout Studies to the Animal Model of Infection Using Chlamydia muridarum. Infection and Immunity 90, e00453-22. doi: 10.1128/iai.00453-22
Filcek, K., Vielfort, K., Muraleedharan, S., Henriksson, J., Valdivia, R. H., Bavoil, P. M., et al. (2019). Insertional mutagenesis in the zoonotic pathogen Chlamydia caviae. PLoS One 14, e0224324. doi: 10.1371/journal.pone.0224324
Marti, H., Biggel, M., Shima, K., Onorini, D., Rupp, J., Charette, S. J., et al. (2023). Chlamydia suis displays high transformation capacity with complete cloning vector integration into the chromosomal rrn-nqrF plasticity zone. Microbiol Spectr 11, e02378-23. doi: 10.1128/spectrum.02378-23

O’Neill, C. E., Clarke, I. N., and Fisher, D. J. (2020). “Chlamydia Genetics,” in Chlamydia Biology: From Genome to Disease, eds. M. Tan, J. H. Hegeman, and C. Sütterlin (Norfolk: Caister Academic Press), 241–262. doi: 10.21775/9781912530281.11
Shima, K., Wanker, M., Skilton, R. J., Cutcliffe, L.T., Schnee, C., Kohl, T. A., et al. (2018). The Genetic Transformation of Chlamydia pneumoniae. mSphere 3, e00412-18. doi: 10.1128/mSphere.00412-18
Shima, K., Weber, M. M., Schnee, C., Sachse, K., Käding, N., Klinger, M., et al. (2020). Development of a Plasmid Shuttle Vector System for Genetic Manipulation of Chlamydia psittaci. mSphere 5, e00787-20. doi: 10.1128/mSphere.00787-20
Sixt, B. S., and Valdivia, R. H. (2016). Molecular Genetic Analysis of Chlamydia Species. Annual Review of Microbiology 70, 179–198. doi: 10.1146/annurev-micro-102215-095539
Tam, J. E., Davis, C. H., Thresher, R. J., and Wyrick, P. B. (1992). Location of the origin of replication for the 7.5-kb Chlamydia trachomatis plasmid. Plasmid 27, 231–236. doi: 10.1016/0147-619x(92)90025-6

Wang, Y., Kahane, S., Cutcliffe, L. T., Skilton, R.J., Lambden, P. R., and Clarke, I. N. (2011). Development of a Transformation System for Chlamydia trachomatis: Restoration of Glycogen Biosynthesis by Acquisition of a Plasmid Shuttle Vector. PLoS Pathogens 7, e1002258. doi: 10.1371/journal.ppat.1002258