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Abstract

Here we present a bioinformatic pipeline for dissecting transcriptional regulation of neural differentiation process.

Single cell RNA-seq and bulk ATAC-seq with two biological replicates was applied to the indicated cell stages

including human induced pluripotent stem cells (hiPSCs), embryo body (EB), early rosettes (Ros-E), late rosettes

(Ros-L), NPCs, and the original somatic fibroblasts (Fib) for a deeper understanding of the regulatory mechanisms

driving the differentiation of the neural lineage. This pipeline could be applied to study transcriptome and

regulome dynamics of other lineages.
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1 Single cell RNA-seq: 50bp single-end sequencing was performed using the BGISEQ-500

platform

Bulk RNA-seq: 50bp single-end sequencing was performed using the BGISEQ-500

platform

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) was

sequenced on BGISEQ-500 platform

2 FASTQC

3 The original FASTQ data of the 527 samples were aligned to the rRNA database

(downloaded from NCBI) to remove rRNAs and the remaining reads were processed with

SOAPnuke (version 1.5.3) to trim adaptors and filter out the low-quality reads. The

filtered data were aligned to the reference genome (hg19) using hisat2 (HISAT2 version

2.0.1-beta). Reads were counted using the R package GenomicAlignments

(mode='Union', inter.feature=FALSE), and normalized to RPKM with edgeR.

4 Cells were filtered using following parameters: genome mapping rate more than 70%,

fraction of reads mapped to mitochondrial genes less than 20%, mRNA mapping rate

more than 80%, ERCC ratio less than 10%, and gene number more than 5000. Further,

correlation of ERCC among cells was used to evaluate the quality of each cell

(threshold=0.9). At last, 445 single cells remained for further analysis in this project.

5 Differentially expressed genes  in iPSCs, EB, Ros-E, Ros-L, and NPCs was determined

using SCDE (single cell differential expression analysis) with default parameters except

requiring a minimum of 100 genes (parameter min.lib.size = 100 to call scde.error.

models function). The Z scores and corrected Z scores (cZ) to adjust for the multiple

testing were converted into two-tailed p-values and adjusted to control for FDR using

pnorm function in R. The significantly differentially expressed genes were selected

based on following criteria: adjusted p-value < 0.01 and fold-change > 2.

##################Detailed script in this step####################

Raw data description

Assess read qualities of read files (fastq files) using FASTQC

Pre-processing of raw data

Quality control of single cell RNA-seq

Identification of differentially expressed genes
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da =

read.table('expression_matrix.txt',header=T,row.names=1,check.names=FALSE,sep='\t')

####do Differential Expression

library(methods)

library(scde)

EB=da[,grep('EB',colnames(da))]

all=da[,c(-grep('EB',colnames(da)),-grep('Fib',colnames(da)))]

x = cbind(EB,all)

sg1 <- gsub('(b[0-9]+).(EB|all)*', '\\2', colnames(x))

sg <- factor(gsub('(EB|all).*', '\\1', sg1), levels = c('EB', 'all'))

sg[is.na(sg)] = 'all'

names(sg) <- colnames(x)

table(sg) 

cd <- clean.counts(x, min.lib.size=100, min.reads = 1, min.detected = 1)

o.ifm <- scde.error.models(counts = cd, groups = sg, n.cores = 1, threshold.segmentation

= TRUE, save.crossfit.plots = FALSE, save.model.plots = FALSE, verbose = 1)

save(o.ifm,file='EB_VS_all.scde.error.models.RData')

#load('EB_VS_all.scde.error.models.RData')

valid.cells <- o.ifm$corr.a > 0

table(valid.cells)

o.ifm <- o.ifm[valid.cells, ]

o.prior <- scde.expression.prior(models = o.ifm, counts = cd, length.out = 400, show.plot

= FALSE)

group1 <- gsub('(b[0-9]+).(EB|all)*', '\\2', rownames(o.ifm))

group <- factor(gsub('(EB|all).*', '\\1', group1), levels = c('EB', 'all'))

group[is.na(group)] = 'all'

names(group) <- row.names(o.ifm)

ediff <- scde.expression.difference(o.ifm, cd, o.prior, groups = group, n.randomizations =

100, n.cores = 1, verbose = 1)

p.values <- 2*pnorm(abs(ediff$Z),lower.tail=F) # 2-tailed p-value

p.values.adj <- 2*pnorm(abs(ediff$cZ),lower.tail=F) # Adjusted to control for FDR

significant.genes <- which(p.values.adj<0.05)

length(significant.genes)

ord <- order(p.values.adj[significant.genes]) # order by p-value

de <- cbind(ediff[significant.genes,1:3],p.values.adj[significant.genes])[ord,]

colnames(de) <- c('Lower bound','log2 fold change','Upper bound','p-value')

write.table(de, file = 'EB_VS_all.scde.FDR.xls', row.names = TRUE, col.names = TRUE,

sep = '\t', quote = FALSE)

6 Monocle ordering was conducted for all iPSCs, EB, Ros-E, Ros-L and NPCs cells using

the set of variable genes with default parameters except we specified reduction_method

Constructing trajectory using variable genes
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=”DDRTree” in the reduceDimension function. The variable genes were selected using

the Seurat R package.

##################Detailed script in this step####################

myda = read.table('expression_matrix.txt',sep='\t',header = T,row.names = 1)

exp = subset(exp,select=c(-grep('H9|Fib',colnames(exp))))

library(Seurat)

marrow <- CreateSeuratObject(raw.data = myda)

marrow <- NormalizeData(object = marrow)

marrow <- FindVariableGenes(object = marrow,

mean.function = ExpMean,

dispersion.function = LogVMR,

x.low.cutoff = 0, x.high.cutoff = 100,

y.cutoff = 0.5,

do.plot = TRUE)

dim(x = marrow@var.genes)

myda = myda[as.matrix(marrow@var.genes),]

pheno.data1 <- colnames(myda)

pheno.data2 <- unlist(lapply(pheno.data1, function(x) strsplit(x,'.',fixed = TRUE)[[1]][2]))

pheno.data3 <- unlist(lapply(pheno.data2, function(x) strsplit(x,'_',fixed = TRUE)[[1]][1]))

##remove the quantity id for each samples

pheno.data4 <- unlist(lapply(pheno.data1, function(x) strsplit(x,'_',fixed = TRUE)[[1]][1]))

pheno.data5 <- unlist(lapply(pheno.data4, function(x) strsplit(x,'.',fixed = TRUE)[[1]][1]))

mode(pheno.data5)

pheno.data.df <- data.frame(type=pheno.data3)

rownames(pheno.data.df) <- colnames(myda)

pd <- new('AnnotatedDataFrame', data = pheno.data.df)

feature.fd = rownames(myda)

feature.fd <- unlist(lapply(feature.fd, function(x) strsplit(x, '.')[[1]][1]))

feature.data.fd = data.frame(type=feature.fd)

rownames(feature.data.fd) <- rownames(myda)

fd <- new('AnnotatedDataFrame', data = feature.data.fd)

HSMM <- newCellDataSet(as(as.matrix(myda), 'sparseMatrix'),

phenoData = pd,

featureData = fd,

lowerDetectionLimit=1,

expressionFamily=tobit())

ordering.genes <- rownames(feature.data.fd)

data <- setOrderingFilter(HSMM, ordering.genes)

data <- reduceDimension(data,max_components=2,reduction_method =

c('DDRTree'),norm_method = 'none')
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data <- orderCells(data, num_paths = 2, reverse = FALSE)

save(data,file='monocle_simple_used_391sample.gene.RData')

pdf('monocle_simple_used__main_subtype.gene_subtype.pdf')

plot_cell_trajectory(data, color_by = 'type',show_branch_points = FALSE)

dev.off()

7 The heterogeneity of each cell stage was determined using Seurat R package.

8 We aligned ATAC-seq data to hg19 using Bowtie2 and called peaks using MACS2. We

established a standard peak set by merging all overlapping peaks. The IDR pipeline was

used to identify reproducible peaks between two biological replicates. Only peaks with

IDR<0.01 were considered reproducible and retained for downstream analysis. Pearson

correlation coefficients of two biological replicates at each stage were calculated. Stage-

specific peaks were defined as peaks having no overlap with any peaks in other stages.

Novel peaks were defined as peaks non-overlapping with previous stages. In the case of

iPSCs, all peaks were annotated as novel peaks. 

For reproducible peaks, we applied HOMER to assign putative targets for peaks. For

stage-specific peaks, ChIPseeker was used for putative target assignment. In both

strategies, the putative target of a certain peak is defined as the gene with TSS closest

to the peak summit location.

9 Lists of genes were analysed using DAVID and the BH method was used for multiple test

correction. GO terms with a FDR less than 0.01 or 0.05 were considered as significantly

enriched. Target genes of stage-specific ATAC peaks were analysed using the R

package, clusterProfiler, in which an adjusted p-value of 0.05 was used to identify

significantly enriched GO and KEGG terms associated with each set of peaks.

10 The scRNA-seq profiles among each cell types were compared using SCDE package.

TFs significantly differentially expressed, with adjusted p-value threshold of 0.05, among

neighboring cell types were submitted to STRING database to infer regulatory networks

based on known interaction relationships (supported by data from curated databases,

experiments and text-mining). TFs without any interactions with other proteins were

Analysis of heterogeneity in each cell stage

ATAC peak calling

GO term and KEGG pathway enrichment analysis

Regulatory network construction

protocols.io | https://dx.doi.org/10.17504/protocols.io.ntpdemn March 14, 2018 6/7

https://dx.doi.org/10.17504/protocols.io.ntpdemn


removed from the network. To select key regulators, we used a threshold of 5 and all TFs

with number of interactions above the threshold were considered as key regulators.

11 The ligand-receptor interaction relationships were downloaded from the database,

IUPHAR/BPS Guide to PHARMACOLOGY, and the Database of Ligand-Receptor Partners

(DLRP). The average expression level of RPKM of 1 was used as a threshold. Ligands and

receptors above the threshold were considered as expressed in the corresponding

cluster. The R package Circlize was used to visualize the interactions.

12 Motifs enriched in each set of ATAC peaks were identified using findMotifsGenome.pl

from HOMER using following parameters: -size -100,100 -len 4,5,6,7,8,9,10,11,12.

Construction of cellular communication network

Motif enrichment analysis

protocols.io | https://dx.doi.org/10.17504/protocols.io.ntpdemn March 14, 2018 7/7

https://dx.doi.org/10.17504/protocols.io.ntpdemn

