Biochemical Measures of Neuropathy - Glutathione Assay (GSH)

Eva Feldman

1University of Michigan - Ann Arbor

Diabetic Complications Consortium
Tech. support email: rmcindoe@augusta.edu

Lili Liang

ABSTRACT

Summary:

Oxidative stress is highly correlated with the metabolic changes caused by hyperglycemia. Increased levels of glucose overload mitochondria and result in the production of reactive oxygen species (ROS). In addition, the flow of excess glucose through cellular pathways decreases the cell’s normal ability to detoxify ROS. As a result, the neurons and axons of the peripheral nervous system contain increased levels of ROS and decreased antioxidant capacity. The following assays are used to measure these changes in rodent models of diabetic neuropathy.

Diabetic Complication:

Neuropathy

license: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

DOI: dx.doi.org/10.17504/protocols.io.3qjgmun

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Protocol status: Working
We use this protocol and it's working

Created: Jun 04, 2019

Last Modified: Aug 14, 2019

PROTOCOL integer ID: 24043

Keywords: Biochemical Measures of Neuropathy, diabetic neuropathy, Glutathione(GSH)

MATERIALS

Perchloric Acid (Lot # 227044) Fisher Scientific Catalog #A469-500
KOH Potassium hydroxide Fisher Scientific Catalog #P250-1
Imidazole Base Sigma Aldrich Catalog #I 2399
Potassium Chloride Fisher Scientific Catalog #P217-500
Tris Base Fisher Scientific Catalog #604204
Tris Hydro Fisher Scientific Catalog #812854
EDTA (Lot 0M1037) Fisher Scientific Catalog #16-004Y
Glutathione (Lot 070K0888) Sigma Aldrich Catalog #G-6529
o-Phthaldialdehyde (Lot 080K2519) Sigma Aldrich Catalog #P-0657
Methanol Fisher Scientific Catalog #A 4524

Reagent Preparation:

3 M HClO4 – 42 ml of 72% stock Perchloric acid into 58 ml ddH2O

2N KOH, 0.4 M imidazole base, and 0.4 M KCl – 56.11 g KOH, 13.62 g Imidazole base and 14.91 g KCl. Add ddH2O to bring up to 500 ml.

1.0 M Tris-HCl buffer pH 8.1 with 20mM EDTA – 50 mL 2M TRIS-HCL pH 8.1, 4mL 0.5 M EDTA and 46 mL ddH2O.

0.1M Glutathione – 30.7 mg into 1 ml H2O.

0-Phthaldialdehyde – 10 mg in 1 ml of methanol.

Sample Preparation:

1. Do not let samples set at 0º for long periods of time.

Prior to dissection, perfuse tissue with PBS pH7.4 with 0.16 mg/ml heparin

1. Label 6 sets of micro centrifuge tubes. (If only doing GSH only need 3 sets)
2. Prepare 3 M HClO₄ and freeze.

3. Cut tissue into segments and weigh. (~10 mg)

4. Keeping labeled tubes on dry ice, add 3 times the weight of 3 M HClO₄.

5. Sonicate on ~5.

6. Add 300 μl of ddH₂O for each 100 μl HClO₄ (3.3 per μl) and vortex. (May include 1 mM EDTA in ddH₂O)

7. Centrifuge at 5000 x g for 10 min.

8. Transfer supernatant to a new labeled tube. Discard protein precipitate.

9. Immediately neutralize with 290 μl/ml of a mixture of 2 N KOH, 0.4 M imidazole base, and 0.4M KCl and vortex. (Leaving a solution at pH 7.)

10. Centrifuge samples @ 5000 x g for 10 min @ 4º to precipitate insoluble KClO₄

Performing the assay:

1. Set up Fluroskan layout and area. Read using 345nm excitation and 425nm emission.

2. Prepare standards as follows: (0-1000μM)

<table>
<thead>
<tr>
<th>Concentration μM/mL</th>
<th>H₂O</th>
<th>GSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
<td>NO GSH</td>
</tr>
<tr>
<td>15.63</td>
<td>500</td>
<td>Take 500 μL from tube 3</td>
</tr>
<tr>
<td>31.25</td>
<td>500</td>
<td>Take 500 μL from tube 4</td>
</tr>
<tr>
<td>62.5</td>
<td>500</td>
<td>Take 500 μL from tube 5</td>
</tr>
<tr>
<td>125</td>
<td>500</td>
<td>Take 500 μL from tube 6</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>Take 500 μL from tube 7</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>Take 500 μL from tube 8</td>
</tr>
<tr>
<td>1000</td>
<td>990</td>
<td>10 μL 0.1M stock</td>
</tr>
</tbody>
</table>
3. On a clear 96 well plate add 20 µl standards to each well in duplicate.

4. Add 20 µl sample extract to each sample well in duplicate or triplicate.

5. Add 180 µl Tris-HCl buffer to each well.

6. Begin reaction by adding 2 µl methanol solution of o-phthaldialdehyde (OPD) (10 mg/ml methanol)

7. Place plate into Fluroskan holder and click **START**.

8. From the drop down menu under sheet select curve fit. Choose the appropriate data to organize (usually Measure1),
 then click **OK**. This calculates your standard curve.

9. Save the curve fit sheet as an Excel file into your data folder. Use the naming convention GSXXXXXX.xls, where
 XXXXXX is the date in yymmdd.xls.