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Abstract
BACKGROUND
As databases grow larger, it becomes harder to fully control their collection, and they frequently come with missing 
values: incomplete observations. These large databases are well suited to train machine-learning models, for instance for 
forecasting or to extract biomarkers in biomedical settings. Such predictive approaches can use discriminative --rather 
than generative-- modeling, and thus open the door to new missing-values strategies. Yet existing empirical evaluations of 
strategies to handle missing values have focused on inferential statistics.

RESULTS
Here we conduct a systematic benchmark of missing-values strategies in predictive models with a focus on large health 
databases: four electronic health record datasets, a population brain imaging one, a health survey and two intensive care 
ones. Using gradient-boosted trees, we compare native support for missing values with simple and state-of-the-art 
imputation prior to learning. We investigate prediction accuracy and computational time. For prediction after imputation, 
we find that adding an indicator to express which values have been imputed is important, suggesting that the data are 
missing not at random. Elaborate missing values imputation can improve prediction compared to simple strategies but 
requires longer computational time on large data. Learning trees that model missing values --with missing incorporated 
attribute-- leads to robust, fast, and well-performing predictive modeling.

CONCLUSIONS
Native support for missing values in supervised machine learning predicts better than state-of-the-art imputation with 
much less computational cost. When using imputation, it is important to add indicator columns expressing which values 
have been imputed.

Guidelines
This protocol details the experiments run in the GigaScience article Benchmarking missing-values approaches for 
predictive models on health databases, Perez-Lebel et al. 2022. The code used for running the experiments and plotting 
the results is available on GitHub: https://github.com/aperezlebel/benchmark_mv_approaches.

Accessing the databases can be time consuming. We published our detailed results in CSV files to allow further analysis 
of our results without needing to access the data: 
https://github.com/aperezlebel/benchmark_mv_approaches/blob/2ed30c0ffffa93f0398731b11b9202523c4da96f/scores
/merged_scores.csv.

Materials
Computing cluster

Safety warnings

No safety warnings.

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
https://github.com/aperezlebel/benchmark_mv_approaches
https://github.com/aperezlebel/benchmark_mv_approaches/blob/2ed30c0ffffa93f0398731b11b9202523c4da96f/scores/merged_scores.csv
https://github.com/aperezlebel/benchmark_mv_approaches/blob/2ed30c0ffffa93f0398731b11b9202523c4da96f/scores/merged_scores.csv
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1 This protocol details the experiments run in the GigaScience article Benchmarking missing-
values approaches for predictive models on health databases, Perez-Lebel et al. 2022. The 
code used for running the experiments and plotting the results is available on GitHub:

And can be installed through the following steps:

Benchmarking missing-values approaches for predictive models...NAME

Alexandre Perez-Lebel DEVELOPER

https://github.com/alexprz/article-benchmark_mv_approaches SOURCE LINK

Software

Download and install the code reproducing the experiments.

Command

git clone https://github.com/aperezlebel/benchmark_mv_approaches.git

cd benchmark_mv_approaches

conda install --file requirements.txt

2 We benchmarked 12 supervised predictive methods on 13 prediction tasks taken from 4 health 
databases.

Each one of the 4 databases needs to be downloaded separately from their respective source 
project. Access to Traumabase, UK BioBank and MIMIC-III, requires an application. NHIS is 
freely available. Once downloaded, data path of each database can be updated in the TB.py, 
UKBB.py, MIMIC.py and NHIS.py files which are in the database/ folder of the project.

Introduction

Data

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
https://github.com/alexprz/article-benchmark_mv_approaches
https://github.com/aperezlebel/benchmark_mv_approaches/blob/196e33cfd6151a91aa7ab62ca0f1c59db7f61b83/database/TB.py#L15
https://github.com/aperezlebel/benchmark_mv_approaches/blob/196e33cfd6151a91aa7ab62ca0f1c59db7f61b83/database/UKBB.py#L14
https://github.com/aperezlebel/benchmark_mv_approaches/blob/196e33cfd6151a91aa7ab62ca0f1c59db7f61b83/database/MIMIC.py#L14
https://github.com/aperezlebel/benchmark_mv_approaches/blob/196e33cfd6151a91aa7ab62ca0f1c59db7f61b83/database/NHIS.py#L13


protocols.io | https://dx.doi.org/10.17504/protocols.io.b3nfqmbn January 11, 2022 4/15

2.1

The Traumabase Group (TB) is a collaboration studying major trauma. The database gathers 
information from 20 French trauma centers on more than 20 000 trauma cases from admission 
until discharge from critical care. Data collection started in 2010 and is still ongoing in 2020. 
We used records spanning from 2010 to 2019. We defined 5 prediction tasks on this database, 
4 classifications and 1 regression. 

Data can be obtained by contacting the team on the Traumabase website.

Traumabase NAME

http://www.traumabase.eu/en_US LINK

Dataset

2.2

UK Biobank (UKBB) is a major prospective epidemiology cohort with biomedical 
measurements. It provides health information on more than 500 000 United-Kingdom 
participants aged between 40 to 69 years from 2006 to 2010. We defined 5 tasks on this 
database, 4 classifications and 1 regression.

The data are available upon application as detailed on the UK BioBank website.

UKBB NAME

https://www.ukbiobank.ac.uk/ LINK

Dataset

2.3

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
http://www.traumabase.eu/en_US/contact
http://www.traumabase.eu/en_US
https://www.ukbiobank.ac.uk/register-apply/
https://www.ukbiobank.ac.uk/
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The Medical Information Mart for Intensive Care (MIMIC) database is an Intensive Care Unit 
(ICU) dataset developed by the MIT Lab for Computational Physiology. It comprises 
deidentified health data associated with about 60 000 ICU admissions recorded at the Beth 
Israel Deaconess Medical Center of Boston, United States, between 2001 and 2012. It includes 
demographics, vital signs, laboratory tests, medications, and more. We defined 2 classification 
tasks on this database. 

The data can be accessed via an application described on the MIMIC website. Note that, as 
of the time of writing, the completion of an online MIT course is required for the application. We 
used the 1.4 version of the data in the project.

MIMIC-III (v1.4) NAME

https://mimic.physionet.org/ LINK

Dataset

2.4

The National Health Interview Survey (NHIS) is a major data collection program of the National 
Center for Health Statistics (NCHS), part of the Centers for Disease Control and Prevention 
(CDC) in the United States. It aims to monitor the health of the population. Since 1957, it 
collects data from United-States population. We used the 2017 edition, summing up to 
approximately 35 000 households containing about 87 500 persons. We defined 1 regression 
task on this database.

It is freely-accessible on the NHIS website.

NHIS (2017) NAME

https://www.cdc.gov/nchs/nhis/nhis_2017_data_release.htmLINK

Dataset

3 From these databases, we defined 13 prediction tasks. That is, a set of input features and an 
outcome to predict. All features of each task belong to the same database.

Prediction tasks

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
https://mimic.physionet.org/gettingstarted/access
https://mimic.physionet.org/
https://www.cdc.gov/nchs/nhis/nhis_2017_data_release.htm
https://www.cdc.gov/nchs/nhis/nhis_2017_data_release.htm
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Available tasks can be obtained with:

Names of the available tasks are:

List the names of all the available tasks.

Command

python main.py info available -t

Expected result

TB/death_pvals
TB/platelet_pvals
TB/hemo
TB/hemo_pvals
TB/septic_pvals
UKBB/breast_25
UKBB/breast_pvals
UKBB/skin_pvals
UKBB/parkinson_pvals
UKBB/fluid_pvals
MIMIC/septic_pvals
MIMIC/hemo_pvals
NHIS/income_pvals

4 36 predictive methods are available. The list of their IDs and names can be obtained running:

IDs and names of the available methods are: 

List the IDs and names of all the available methods.

Command

python main.py info available -m

Predictive methods

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
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Classification and Regression code respectively for HistGradientBoostingClassifier and 
HistGradientBoostingRegressor from scikit-learn. Classification_Logit and Regression_Ridge 
code respectively for linear models Logit and Ridge used in the supplementary experiment. To 
each of these 4 base codes can be appended the name of an imputer (eg _imuted_Mean, 
_Imputed_Med, ...) with or without the mask (eg _imuted_Mean, _Imputed_Mean+mask, ...). 
Whether to use Bagging can be specified later as explained in the Prediction section of this 
protocol.

Expected result

0: Classification
1: Classification_Logit
2: Regression
3: Regression_Ridge
4: Classification_imputed_Mean
5: Classification_Logit_imputed_Mean
6: Regression_imputed_Mean
7: Regression_Ridge_imputed_Mean
8: Classification_imputed_Mean+mask
9: Classification_Logit_imputed_Mean+mask
10: Regression_imputed_Mean+mask
11: Regression_Ridge_imputed_Mean+mask
12: Classification_imputed_Med
13: Classification_Logit_imputed_Med
14: Regression_imputed_Med
15: Regression_Ridge_imputed_Med
16: Classification_imputed_Med+mask
17: Classification_Logit_imputed_Med+mask
18: Regression_imputed_Med+mask
19: Regression_Ridge_imputed_Med+mask
20: Classification_imputed_Iterative
21: Classification_Logit_imputed_Iterative
22: Regression_imputed_Iterative
23: Regression_Ridge_imputed_Iterative
24: Classification_imputed_Iterative+mask
25: Classification_Logit_imputed_Iterative+mask
26: Regression_imputed_Iterative+mask
27: Regression_Ridge_imputed_Iterative+mask
28: Classification_imputed_KNN
29: Classification_Logit_imputed_KNN
30: Regression_imputed_KNN
31: Regression_Ridge_imputed_KNN
32: Classification_imputed_KNN+mask
33: Classification_Logit_imputed_KNN+mask
34: Regression_imputed_KNN+mask
35: Regression_Ridge_imputed_KNN+mask

Feature selection

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
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5 11 tasks have their features automatically selected with a simple ANOVA-based univariate test 
of the link of each feature to the outcome (task name ends with "_pvals" in the code and 
"_screening" in the article). 
The 2 remaining tasks have their feature manually defined following the choices of experts in 
prior studies. 

5.1 ANOVA-based feature selection

Categorical features are first one-hot encoded. Then, the ANOVA-based univariate test is 
performed on one third of the samples which are then discarded. We kept the 100 encoded 
features having the smallest 100 p-values. Once the features are selected, the cross-validated 
prediction is performed on the remaining two thirds of the samples. 
For these tasks, there are 5 trials during which the samples on which the selection test is 
performed are redrawn, and the prediction each time fitted on the new remaining samples and 
the new selected features.

We used f_classif and f_regression from the feature_selection module of scikit-learn.

For each of these tasks, p-values of the test can be computed for each trial by running:

Be careful to replace placeholders {task_name} and {T} by the name of the task and the trial ID 
(0 to 4) respectively.
Example:

Compute p-values of ANOVA-based test to select features

Command

python main.py select {task_name} --T {T}

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
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Compute p-values of ANOVA-based test to select features of the task 
TB/death_pvals on the first trial.

Command

python main.py select TB/death_pvals --T 0

Safety information

Note that these commands will fail without the data and without the types of the features.

5.2 Manual selection following experts

Features for the hemorrhagic shock prediction (task named TB/hemo) in the Traumabase 
database are defined following Jiang et al.:

Features for the breast cancer prediction (task named UKBB/breast_25) are defined following 
Läll et al.:

Wei Jiang, Julie Josse, Marc Lavielle, TraumaBase Group (2020). Logistic Regression with 
Missing Covariates -- Parameter Estimation, Model Selection and Prediction within a Joint-
Modeling Framework. Computational Statistics and Data Analysis.
LINK

https://doi.org/10.1016/j.csda.2019.106907

CITATION

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
https://doi.org/10.1016/j.csda.2019.106907
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There is only 1 trial for these tasks.

Kristi Läll, Maarja Lepamets, Marili Palover, Tõnu Esko, Andres Metspalu, Neeme Tõnisson, 
Peeter Padrik, Reedik Mägi, Krista Fischer (2019). Polygenic prediction of breast cancer: 
comparison of genetic predictors and implications for risk stratification. BMC Cancer.
LINK

https://doi.org/10.1186/s12885-019-5783-1

CITATION

6 Scale
To study the influence of the scale on the results, we decided to work on 4 sizes of the training 
set: 2 500, 10 000, 25 000 and 100 000. For each one of these sizes are run the following 
operations.

Nested cross-validations
Two nested cross-validations are used. The outer one yields 5 training and test sets. The 
training set has 2 500, 10 000, 25 000 or 100 000 samples depending on the scale. The test set 
is composed of all the remaining samples. Note that the size of the test set is considerably 
larger with a train set of 2 500 samples than with 100 000. On each training set, we perform a 
cross-validated hyper-parameter search –the inner cross-validation– and select the best hyper-
parameters. We evaluate the best model on the respective test set. We assess the quality of 
the prediction with a coefficient of determination for regressions and the area under the ROC 
curve for classification. We average the scores obtained on the 5 test sets of the outer cross-
validation to give the final score.

The test set size is at least 10% the size of the training set. If a prediction task has not enough 
samples once the feature selection is performed (eg 110 000 samples for the 100 000 scale), it 
is skipped for the corresponding scale. As a result the biggest scale has fewer available tasks 
than the smallest one (resp. 4 against 13).

To draw the 5 folds, we used StratifiedShuffleSplit (resp. ShuffleSplit) from scikit-learn for 
classifications (resp. regressions). We used GridSearchCV from scikit-learn to perform the 
cross-validated hyper-parameters tuning.

Evaluating a method on a prediction task is done by running:

Prediction 3,095w 1d 16h

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
https://doi.org/10.1186/s12885-019-5783-1
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Be careful to replace placeholders {task_name}, {method_id} and {T} by the name of the task, 
the ID or name of the method and the trial ID (0 to 4) respectively.
Example:

Some methods of the benchmark use bagging. To add bagging to an available method, specify 
the number of estimators you want in the ensemble with the nbagging option. For instance:

Benchmark a method on a prediction task

Command

python main.py predict {task_name} {method_id} --T {T}

Benchmark method with ID 0 on the task TB/death_pvals on the trial 0.

Command

python main.py predict TB/death_pvals 0 --T 0

Benchmark method with ID 0 bagged with 100 base estimators, on the task 
TB/death_pvals on the trial 0.

Command

python main.py predict TB/death_pvals 0 --T 0 --nbagging 100

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
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Results are dumped in the results/ folder.

To run the full benchmark of the article, we needed 520 000 CPU hours.

520000:00:00 CPU hours to run the full benchmark  

Safety information

Note that these commands will fail without the data and without the types of the features.

6.1 Imputation

5 imputation methods are available:
Imputation with the mean.
Imputation with the median.
Iterative imputation.
Imputation with the nearest neighbors.
Multiple Imputation using Bagging.

For each of them, new binary features can be added to the data. This binary mask encodes 
whether a value was originally missing or not.

The imputer is fitted on the train set only and both the train and test sets are then imputed with 
the fitted imputer. Doing so avoids leaking information from the train set to the test set and 
then helps to avoid overfitting.

We used SimpleImputer, IterativeImputer, KNNImputer, BaggingClassifier and 
BaggingRegressor from scikit-learn.

7 Once the results of all the methods are obtained, they are gathered in a single CSV file using 
the following command:

Results

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
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This creates a scores.csv file in the scores/ folder.

The aggregated results obtained during our experiment are given in our repository. This 
allows to reproduce the figures and tables and to analyze further the results without needing 
the original data.

Merge all results in a single csv file

Command

python main.py aggregate --root results/

8 Most of the figures and tables of our article can be easily reproduced without requiring the 
original data (based on saved results only). Use commands defined in the Makefile to easily 
reproduce figures and tabs. (Note that some commands will fail because they require data or 
raw results that are not available in the repository).

All figures and tables are saved in the graphics/ folder of the repository.

The main figure can be reproduced with:

or

Reproduce the main figure of the article.

Command

python main.py figs boxplot

Figures and tables

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
https://github.com/aperezlebel/benchmark_mv_approaches/blob/2ed30c0ffffa93f0398731b11b9202523c4da96f/scores/merged_scores.csv
https://github.com/aperezlebel/benchmark_mv_approaches/blob/45ec73a33f7fea9087917fbcaf0ca8af3241fa50/Makefile
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Reproduce the main figure of the article.

Command

make boxplot

Expected result

Main figure part 1: Comparison of prediction performance across the 12 methods for 
13 prediction tasks spread over 4 databases, and for 4 sizes of dataset (2 500, 10 
000, 25 000 and 100 000 samples).

Main figure part 2: Comparison of training times across the 12 methods for 13 
prediction tasks spread over 4 databases, and for 4 sizes of dataset (2 500, 10 000, 
25 000 and 100 000 samples).

https://dx.doi.org/10.17504/protocols.io.b3nfqmbn
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