

Nov 02, 2017

Version 2

ATAC-seq on nuclei from frozen, sliced, Drosophila melanogaster embryo halves V.2

PLOS One

DOI

dx.doi.org/10.17504/protocols.io.kj5cuq6

Jenna Haines¹

¹University of California Berkeley

Jenna Haines

University of California, Berkeley

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.kj5cuq6

External link: https://www.biorxiv.org/content/early/2017/09/27/195073

Protocol Citation: Jenna Haines 2017. ATAC-seq on nuclei from frozen, sliced, Drosophila melanogaster embryo halves. **protocols.io** https://dx.doi.org/10.17504/protocols.io.kj5cuq6

Manuscript citation:

Haines 2017

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: November 02, 2017

Last Modified: March 27, 2018

Protocol Integer ID: 8541

Keywords: drosophila melanogaster embryo halves protocol, seq on nuclei, drosophila melanogaster stage, embryo, posterior midline, drosophila melanogaster, performing atac, atac, nuclei, seq

Abstract

Protocol for performing ATAC-seq on nuclei isolated from *Drosophila melanogaster* stage 5 embryos that were flash frozen and then cut in half along the anterior-posterior midline. Data from this protocol are presented in the following paper: https://www.biorxiv.org/content/early/2017/09/27/195073.

This protocol is based adapted from the following sources: https://www.nature.com/nmeth/journal/v10/n12/full/nmeth.2688.html and http://journals.plos.org/plosgenetics/article?

Materials

STEP MATERIALS

- Shandon™ Straight Point Teasing Needles, Straight Point, Wooden Handle, 5.5 in. (14.0cm) **Thermo**Scientific Catalog #19010
- **⊠** Fisherbrand[™] High Precision #10 Style Scalpel Blade **Fisher Scientific Catalog** #12-000-162
- Nextera DNA library preparation kit 24 samples Catalog #FC-121-1030
- MinElute Reaction Cleanup Kit Qiagen Catalog #28204
- 🔯 Corning® CoolRack CF15, Holds 15 Cryovial or FACS Tubes (Product #432049) Corning Catalog #432049
- Shandon™ Straight Point Teasing Needles, Straight Point, Wooden Handle, 5.5 in. (14.0cm) **Thermo**Scientific Catalog #19010
- **⊠** Fisherbrand[™] High Precision #10 Style Scalpel Blade **Fisher Scientific Catalog #**12-000-162
- Pellet pestles Merck MilliporeSigma (Sigma-Aldrich) Catalog #Z359947
- X Nextera DNA library preparation kit 24 samples Catalog #FC-121-1030
- MinElute Reaction Cleanup Kit Qiagen Catalog #28204
- 🔯 Corning® CoolRack CF15, Holds 15 Cryovial or FACS Tubes (Product #432049) Corning Catalog #432049

Protocol materials

- Fisherbrand™ High Precision #10 Style Scalpel Blade Fisher Scientific Catalog #12-000-162
- MinElute Reaction Cleanup Kit Qiagen Catalog #28204
- Corning® CoolRack CF15, Holds 15 Cryovial or FACS Tubes (Product #432049) Corning Catalog #432049
- Shandon™ Straight Point Teasing Needles, Straight Point, Wooden Handle, 5.5 in. (14.0cm) **Thermo**Scientific Catalog #19010
- Corning® CoolRack CF15, Holds 15 Cryovial or FACS Tubes (Product #432049) Corning Catalog #432049
- Pellet pestles Merck MilliporeSigma (Sigma-Aldrich) Catalog #Z359947
- X Nextera DNA library preparation kit 24 samples Catalog #FC-121-1030
- MinElute Reaction Cleanup Kit Qiagen Catalog #28204
- Shandon™ Straight Point Teasing Needles, Straight Point, Wooden Handle, 5.5 in. (14.0cm) **Thermo**Scientific Catalog #19010
- **⊠** Fisherbrand[™] High Precision #10 Style Scalpel Blade **Fisher Scientific Catalog #**12-000-162
- Pellet pestles Merck MilliporeSigma (Sigma-Aldrich) Catalog #Z359947
- X Nextera DNA library preparation kit 24 samples Catalog #FC-121-1030
- Shandon[™] Straight Point Teasing Needles, Straight Point, Wooden Handle, 5.5 in. (14.0cm) **Thermo**Scientific Catalog #19010
- **⊠** Fisherbrand[™] High Precision #10 Style Scalpel Blade **Fisher Scientific Catalog #**12-000-162
- **X** Pellet pestles Merck MilliporeSigma (Sigma-Aldrich) Catalog #Z359947
- X Nextera DNA library preparation kit 24 samples Catalog #FC-121-1030
- MinElute Reaction Cleanup Kit Qiagen Catalog #28204
- Ø Corning® CoolRack CF15, Holds 15 Cryovial or FACS Tubes (Product #432049) Corning Catalog #432049

Troubleshooting

Safety warnings

- Always wear proper PPE
- Be careful to not get frostbite when working with dry ice. Double glove when handling the chilled scalpel.

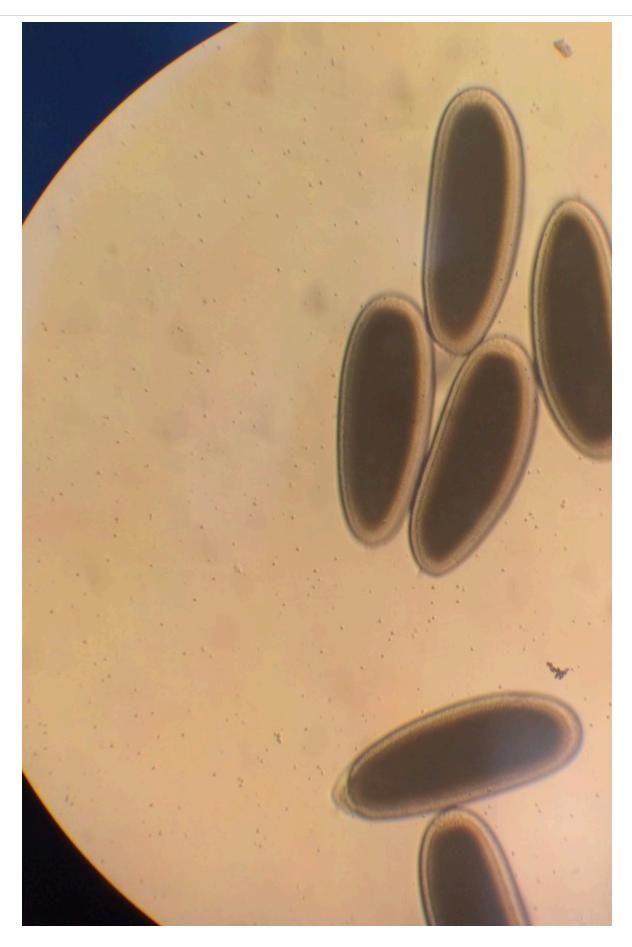
Solutions

- Lysis Buffer NO detergent
 - 10mM Tris-Hcl, pH 7.4
 - 10mM NaC1
 - 3mM MgCl2

Store at 4dC- make fresh weekly

Lysis Buffer Freezing Media

- 10ml Lysis Buffer No Detergent
- 1ml of 50% glycerol
- 1ul of bromoblue dye


<u>Lysis Buffer + Spermine</u>

- 10ml Lysis Buffer No Detergent
- 0.15mM spermine

Embryo Collection

- 2 Put several hundred adult OregonR Drosophila melanogaster (http://flybase.org/reports/FBsn0000276.html) into a fly cage at 25°C for three days. Feed flies with standard molasses plates a spread of yeast paste. Collect embryos for 2 hours and then let them age at 25°C for an hour and thirty minutes. This should yield embryos between 2:00 and 3:30 hours old.
 - © 02:00:00 Embryo collection
 - (*) 01:30:00 Aging
- 3 Bleach embryos for 3 minutes in 30%-50% bleach to remove the chorion.
 - © 00:03:00 Bleaching
- 4 Rinse well with water. Pat dry on towel.
- 5 Rinse with 1xPBS + 0.5% Triton.
- 6 Brush embryos into an 1.5ml tube filled with 1xPBS + 0.5% Triton. Let embryos settle. Then use a pipette tip to transfer a drop of embryos to a slide.
- 7 Stage the embryos to the desired age. We usually go for Stage 5.

Freezing and Slicing embryos

- 8 Chill a cold block in the -80 for at least 30 minutes. Once it's cold, place in a box surrounded by dry ice to keep it cool while you slice
 - Corning® CoolRack CF15, Holds 15 Cryovial or FACS Tubes (Product #432049) Corning Catalog #432049
 - **(2)** 00:30:00 Freezing

Freezing and Slicing Embryos

- 9 Place staged embryos into ependorf tubes containing Lysis buffer freezing media.
- 10 Keep the slides, poker tool, and scalpel on dry ice to keep from melting.
 - Shandon™ Straight Point Teasing Needles, Straight Point, Wooden Handle, 5.5 in. (14.0cm) **Thermo Scientific Catalog #**19010
 - Fisherbrand™ High Precision #10 Style Scalpel Blade Fisher
 Scientific Catalog #12-000-162
- Underneath a dissection scope, space out staged embryos on the glass slide such that they are evenly separated and can be cut easily with the blade. I affix a grid pattern to the bottom side of the glass slide to offer contrast to the white embryos.
- Once the embryos are lined up on a slide, gently place the slide on dry ice for 2-5 minutes while you prepare the next slide. The embryos will turn from clear to completely white when frozen. I usually line up 10 embryos / slide and slice 5-6 slides at a time.
 - © 00:05:00 Placement on dry ice
- Once embryos are frozen, immediately transfer the slide to a cold block that has been chilled. I surround the block with dry ice to keep it cool. Additionally, it is necessary to cool down the scalpel on dry ice before cutting. I leave the scalpel and 2 poker tools in dry ice while cutting to keep them cold. Be sure to wear gloves and keep the scalpel handle away from the dry ice to keep hands warm.
- 14 Cut embryos along the midline with the dry ice chilled blade or scalpel. Move each half to a 1.5ml tube filled with 50ul of ATAC Lysis buffer + Spermine with the chilled poker tool.

- The embryos will thaw and dissolve as soon as they are transferred. To reduce contamination, we use 2 poker tools, one to handle anterior halves and one to handle posterior halves. Additionally, we wash pokers in 70% EtOH between slices
- Δ 50 μL ATAC Lysis buffer + Spermine
- Once your tube contains the desired number of embryo halves, move on to isolate the nuclei.

Embryo Lysing

- 16 Crush using a plastic pestle upwards of 20 times vigorously.
 - Pellet pestles Merck MilliporeSigma (Sigma-Aldrich) Catalog #Z359947
- After homogenization, rinse the pestle with 50ul of lysis buffer to make sure not to lose any material. This will bring the total volume up to 100ul.
 - Δ 50 μL Lysis buffer
- Vortex slightly at low speed and spin down on a table top centrifuge.
- Add 1ul of 10% IGEPAL CA-630 drop-wise to a final concentration of 0.1%. Mix well by flicking tube with a finger. **Let sit for about 10 minutes**
 - △ 1 μL 10% IGEPAL CA-630
 - **(5)** 00:10:00 Wait
- Spin in microcentrifuge at 800xg for 10 minutes at 4dC. Remove as much supernatant as possible to to avoid nuclei loss.
 - 00:10:00 Centrifugation
- 21 Resuspend nuclei in enough DNAse and RNAse free water for the transposition reaction (below).

Tagmentation

22 Make sure the cell pellet is set on ice.

To make the transposition reaction mix, combine the following:

Sample 20 halves- 10 embryo

2x TD Buffer-	25
Tn5 Enzyme	7.5
H20/ DNA	17.5
Total	50

- X Nextera DNA library preparation kit 24 samples Catalog #FC-121-1030
- 23 Gently pipette to resuspend nuclei in the transposition reaction mix.
- 24 Incubate the transposition reaction at 37°C for 30 min. Immediately following transposition, purify using a **Qiagen MinElute Kit**.
 - © 00:30:00 Tagmentation
 - MinElute Reaction Cleanup Kit Qiagen Catalog #28204
- 25 Purified DNA can be stored at -20°C

I quantify DNA at this point with the qubit.

PCR amplification

- 26 To amplify transposed DNA fragments, combine the following in a PCR tube:
 - 10 μL Transposed DNA
 - 5 ul 25uM Primer 1
 - 5 ul 25uM Primer 2
 - 25ul NebNext 2x Master Mix
 - 5ul of PPC

50 μL Total

Run PCR as follows:

- (1) 72°C, 5 min
- (2) 98°C, 30 sec
- (3) 98°C, 10 sec
- (4) 63°C, 30 sec
- (5) 72°C, 1 min
- (6) Repeat steps 3-5, **5x**
- (7) Hold at 4°C

Optional - QPCR

27 You can stop at this point and run a small qPCR reaction to calculate the number of additional cycles to use to avoid overamplification.

Take out 5 ul of PCR reaction and run the qPCR reaction with the same conditions.

5 μL Transposed DNA 0.25 ul 25uM Primer 1 0.25 ul 25uM Primer 2 5ul NebNext 2x Master Mix 3.9 ul of H20 0.09 100x Sybr Green I Dye

15 μL Total

Put in the QPCR machine and run:

1 cycle: 30 sec 98° C 20 cycles: 10 sec 98° C 30 sec 63° C 1 min 72° C.

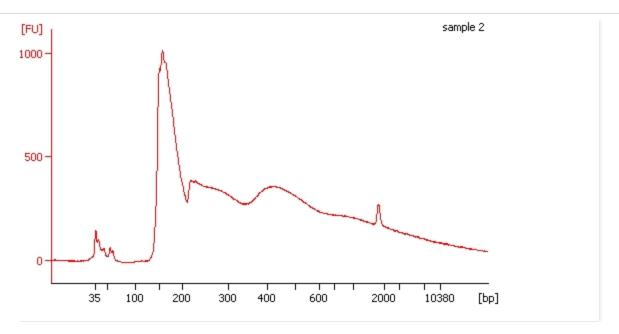
To calculate the additional number of cycles needed, plot linear Rn (fluorescence) versus cycle and determine the cycle number that corresponds to one-third of the maximum fluorescent intensity.

- 28 Once you decide how many additional cycles to run, run the rest of the PCR:
 - (2) 98°C, 30 sec
 - (3) 98°C, 10 sec
 - (4) **63°C**, 30 sec
 - (5) 72°C, 1 min **For X cycles**
 - (7) Hold at 4dC

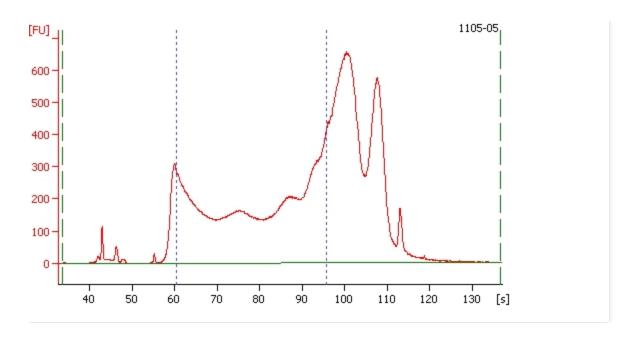
Ampure (or Spri) bead Cleanup

- 29 Bring Beads to RT.
- 30 Add 1.25x Beads, Mix well, let stand for 5 minutes.

() 00:05:00 Wait



- 31 Put on a magnet, let stand for 2 minutes.
 - **©** 00:02:00 Magnet
- 32 Wash with 70% EtOH. (1/2)
- 33 Wash with 70% EtOH. (2/2)
- 34 Let dry for 10 minutes.
 - **(5)** 00:10:00 Drying
- 35 Resuspend in 20ul H₂O.
 - Δ 20 μL H20
- 36 Let sit for one minute, put on magnet, take of super.
 - **(**) 00:01:00 Wait


Library Validation

37 To validate your libraries, quantify them with qubit HS DNA and evaluate them with the Bioanalyzer High Sensitivity DNA assay.

Sometimes they look like this:

Sometimes they look like this: I usually see this when I am working with smaller amounts of embryos. Below is from one embryo half. I am not 100% sure what this means (whether it's actually undertagmented or what) but when I sequenced this sample the data was comprable to my other samples. If you have any ideas let me know! I usually try not to sequence these samples but they could be perfectly fine.

