Antibiotics gradient assay for V. natriegens

Franziska Müller¹, Memduha Muratoglu¹

¹Phillips-Universität Marburg

DOI
dx.doi.org/10.17504/protocols.io.ps8dnhw

PROTOCOL CITATION

LICENSE
This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED
Apr 27, 2018

LAST MODIFIED
Apr 27, 2018

PROTOCOL INTEGER ID
11840

1 Inoculate preculture of *V. natriegens* in LB3 medium (3% NaCl) and incubate overnight at 37°C, shaking.

Preparation of gradient plates

2 Preparation of the first layer:
 Place 11.5x11.5 cm plates in an inclent position. The angle of inclination is such that the agar layer diminishes to nothing at one edge of the plate. Pour 30 ml of LB3 with chosen antibiotics of concentrations to be tested into the plate. Let the agar solidify.

3 Switch position of the plate to an even surface and pour 30 ml of LB3 agar without any antibiotics to onto the first layer. Let the agar solidify.

Spotting of V. natriegens

4 Dilute the preculture to an OD550 of 0.1.

5 Pipette 8-10 spots of 5 µl of the culture along the gradient.
6. Let the spots dry and incubate the plates upside-down at 37°C over night or at room temperature over the weekend.

Measurement

7. Measure the distance from the edge of the agar plate to the last point of growth.

8. Calculate the highest concentration were *V. natriegens* can survive by using the following equation:

\[
c_{\text{antibioticH}} = c_{\text{antibioticmax}} \times \frac{d_{\text{growth}}}{d_{\text{plate}}}
\]

- \(c_{\text{antibioticH}}\): highest antibiotic concentration *V. natriegens* can survive
- \(c_{\text{antibioticmax}}\): maximum antibiotics concentration (concentration used for the lower layer of the plate)
- \(d_{\text{growth}}\): distance from the edge of the agar plate to the last point of growth
- \(d_{\text{plate}}\): length of the plate (11.5 cm)