

Aug 10, 2022


Anthoceros punctatus (hornwort) transformation

In 1 collection

DOI

dx.doi.org/10.17504/protocols.io.81wgb6jz3lpk/v1

¹University of Cambridge; ²University of Zürich

Hornworts

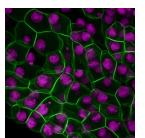
Eftychis Frangedakis

University of Cambridge, Plant Sciences

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account



 $\textbf{DOI:}\ \underline{https://dx.doi.org/10.17504/protocols.io.81wgb6jz3lpk/v1}$

Protocol Citation: Eftychis Frangedakis, Manuel Waller 2022. Anthoceros punctatus (hornwort) transformation. **protocols.io** https://dx.doi.org/10.17504/protocols.io.81wgb6jz3lpk/v1

Manuscript citation:

https://doi.org/10.1101/2022.08.10.503456

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: August 03, 2022

Last Modified: August 10, 2022

Protocol Integer ID: 68157

Keywords: transformation anthoceros punctatus, anthoceros punctatus, hornwort, transformation

Abstract

Anthoceros punctatus (hornwort) transformation

Materials

KNOP recipe:

Stock 1

25g/L KH₂PO₄

Stock 2

25q/L KCI

Stock 3

25g/L MgSO₄ 7H₂O

Stock 4

100g/L Ca(NO₃)₂ 4H₂O

autoclave and store at RT or 4°C

KNOP solid working solution:

In 600 mL of water add:

10ml Stock 1

10ml Stock 2

10ml Stock 3

10ml Stock 4

12.5mg FeSO₄7H₂O

pH to 5.8 with KOH

top up water to 1L after adjusting pH

add 7 gr of Gelzan - G1910 - CAS Number 71010-52-1

KNOP liquid working solution:

In 600 mL of water add:

10ml Stock 1

10ml Stock 2

10ml Stock 3

10ml Stock 4

12.5mg FeSO₄7H₂O

10 gr of sucrose (1% w/v final concentration)

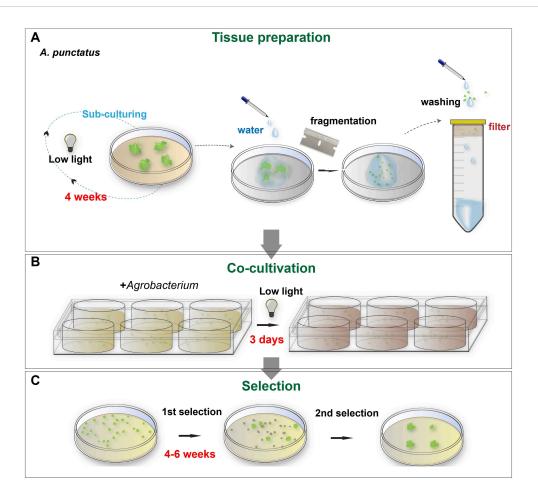
40mM MES (very important)

pH to 5.5 with KOH

top up water to 1L after adjusting pH Filter sterile (do not autoclave), aliquot into 50mL falcon tubes and store at -20°C. Sterile disposable scalpels (#0501, Swann Morton) Razor blades (#11904325, Fisher Scientific) 100 μm cell strainer (#352360, CORNING), 6-well plate (#140675, ThermoFisher) 3',5'-dimethoxy-4'-hydroxyacetophenone (acetosyringone) (#115540050, Acros Organics, dissolved in dimethyl sulfoxide (DMSO) (#D8418, SIGMA)) Cefotaxime (#BIC0111, Apollo Scientific) Hygromycin (#10687010, Invitrogen)

Troubleshooting

Corning Disposable Vacuum Filter/Storage Systems (#430767)


1 Axenic cultures of *A. punctatus* gametophytes can be routinely propagated by monthly sub-culturing

2

Figure 1: 6 week old *A. punctatus* thallus

3

Figure 2: Transformation method outline. A) Thallus tissue is routinely propagated on a monthly basis under low light. 4-6 week old tissue is fragmented with the aid of a razor blade, transferred to a cell strainer, and washed thoroughly with sterile water. B) The tissue is then co-cultivated with *Agrobacterium* for three days (under low light) and C) spread on antibiotic-containing growth medium. After approximately 4-6 weeks, putative transformants are visible. A final round of selection is recommended to eliminate false-positive transformants.

4 Tissue preparation:

- Collect approximately 1 g of thallus tissue grown for 4-6 weeks under low light intensity (approximately 0.1 g of tissue per petri dish 10 petri dishes in total). Figure1 and Figure 3.1
- Transfer the tissue into an empty petri dish, add sterile water until the tissue is covered and fragment using a razor blade (it takes approximately 5 mins, similar to Video 1). **Figure 3.2-3**

■ Transfer the tissue from the petri dish into a cell strainer positioned on a falcon tube using sterile scalpels and wash the tissue using ~100 ml of sterile water or until the flow through was clear. **Figure 3.4-6**

5 Agrobacterium culture preparation:

- Inoculate 5 mL LB media with 3-4 Agrobacterium colonies (AGL1: 15 μg/mL rifampicin, 50 μg/mL carbenicillin) (GV3101: 50 μg/mL rifampicin, 25 μg/mL gentamicin) and the plasmid-specific selection antibiotic.
- Incubate the preculture at 28°C for 2 days at 110 rpm.
- Centrifuge 5 mL of 2 d Agrobacterium culture (no need to measure OD) for 7 min at 2000 xq.
- Remove supernatant and re-suspend in 5 mL liquid KNOP plus 1% (w/v) sucrose and 100 μM acetosyringone.
- Incubate the culture with shaking (120 rpm) at 28°C for 3-5 hours.

6 **Co-cultivation**:

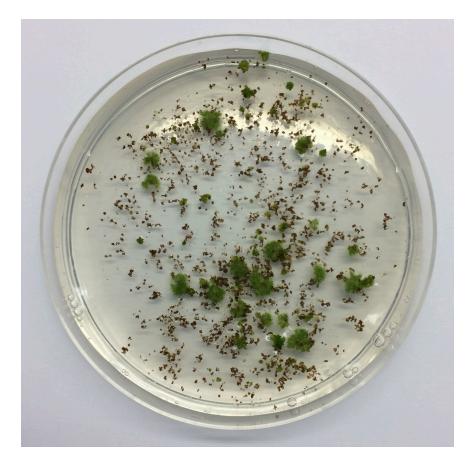
- Transferred the fragmented thallus tissue into a 6-well plate (transfer % of the 1 g tissue into a single well) with 5 mL of liquid KNOP medium supplemented with 1% (w/v) sucrose and 30-40 mM MES (VERY IMPORTANT), pH 5.5, 80 μL of Agrobacterium culture and acetosyringone at final concentration of 100 μM. Figure 3.7
- Co-cultivate the tissue with the *Agrobacterium* for 3 days on a shaker at 110 rpm, with only ambient light.
- Using a sterile plastic pipette transfer the tissue of one well into a cell strainer, drain and then transfer on growth media containing the appropriate antibiotic (onto 1 petri dish from one well). To facilitate spreading of the tissue, 1-2 mL of sterile water is added to the petri dish. Figure 3.8-11
- After 6-7 weeks successful transformants are visible on the petri dish (successful transformants can be identified using a dissecting scope after 4 weeks selection (sometimes as early as 2 weeks) based on rhizoid production and/or fluorescence if such a marker is present on the construct). Figure 3.12

• The emergence of rhizoids is an indication of successful transformation (yellow arrow: transformed thallus fragment, blue arrow: dying thallus fragment). Figure 4


7

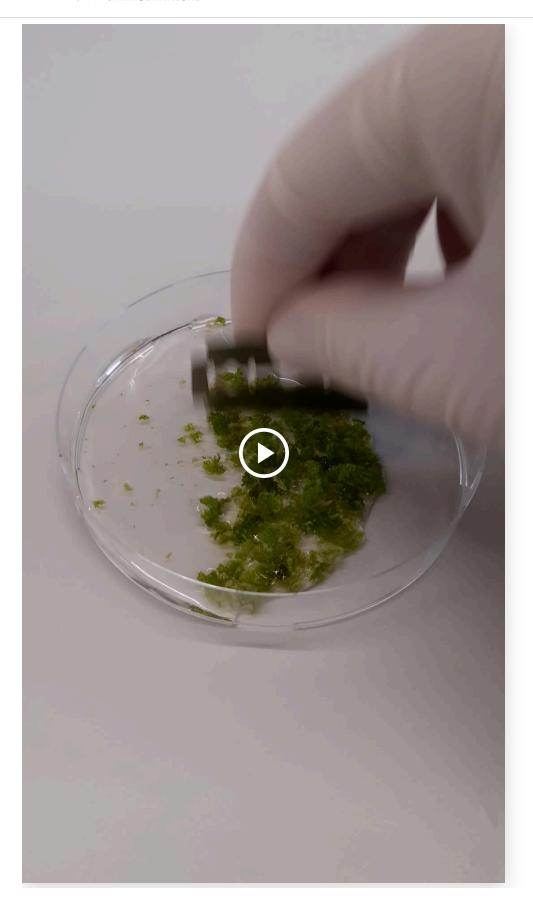
2nd selection (necessary):

• To eliminate false positives, after 4 weeks transfer the tissue to fresh growth media containing 100 µg/mL cefotaxime and 10 µg/mL Hygromycin. To facilitate spreading of tissue on the petri dish add 2 mL of sterile water. Grow at 21°C under 12 hours light and 12 hours dark, 35 μ mol m⁻²s⁻¹. Sometimes a 3rd round of selection is necessary.


Figure 3

9

Figure 4: The emergence of rhizoids is an indication of successful transformation (yellow arrows: transformed thallus fragment, blue arrow: dying thallus fragment).


10

Example of plate with successful transformants 8 weeks after co-cultivation.

11

Video 1, Example of tissue fragmentation for *A. agrestis* Bonn. The method is the same for A. punctatus.