

Mar 14, 2020

Adapter ligation with AMX

DOI

dx.doi.org/10.17504/protocols.io.bdp5i5q6

Josh Quick¹

¹University of Birmingham

Josh Quick

University of Birmingham

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.bdp5i5q6

External link: http://lab.loman.net/protocols/

Protocol Citation: Josh Quick 2020. Adapter ligation with AMX. protocols.io

https://dx.doi.org/10.17504/protocols.io.bdp5i5q6

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: March 14, 2020

Last Modified: March 14, 2020

Protocol Integer ID: 34269

Keywords: adapter ligation with amx, adapter ligation, single amplicon pool, amx, subprotocol

Abstract

This is a subprotocol for generating a library from a single amplicon pool

Attachments

One-pot native barco...

64KB

Troubleshooting

Safety warnings

See SDS (Safety Data Sheet) for safety warnings and hazards.

1 Set up the following AMX adapter ligation reaction:

Component

Volume

End-repaired amplicon pools

Ligation Buffer (LNB)

Adapter Mix (AMX)

Quick T4 DNA Ligase

Total

Note

There will be some variation in clean-up efficiencies but expect to carry around 80% through a clean-up.

- 2 Incubate at room temperature for 00:10:00
- Add \perp 50 μ L (1:1) of SPRI beads to the sample tube and mix gently by either flicking or pipetting.

Note

Vortex SPRI beads thoroughly before use to ensure they are well resuspended, the solution should be a homogenous brown colour.

- 4 Pulse centrifuge to collect all liquid at the bottom of the tube.
- 5 Incubate for 00:05:00 at room temperature.
- Place on magnetic rack and incubate for 00:02:00 or until the beads have pelleted and the supernatant is completely clear.

- 7 Carefully remove and discard the supernatant, being careful not to touch the bead pellet.
- 8 Add 4 250 μL SFB and resuspend beads completely by pipette mixing.

Note

SFB will remove excess adapter without damaging the adapter-protein complexes. Do not use 70% ethanol as in early clean-ups.

- 9 Pulse centrifuge to collect all liquid at the bottom of the tube.
- 10 Remove supernatant and discard.
- 11 Repeat steps 14-16 to perform a second SFB wash.
- 12 Pulse centrifuge and remove any residual SFB.

Note

You do not need to allow to air dry with SFB washes.

- 13 Add \perp 15 μ L EB and resuspend beads by pipette mixing.
- 14 Incubate at room temperature for 00:02:00.
- 15 Place on magnetic rack.
- 16 Transfer final library to a new 1.5mL Eppendorf tube.