Acid nucleic extraction from rice dried leaves

Martine Bangratz¹, Charlotte Tollenaere¹

PLOS One

IRD, Montpellier, France

Works for me dx.doi.org/10.17504/protocols.io.bcntiven

ABSTRACT

Acid nucleic extraction of rice dried leaves by a CTAB method adapted from Li et al 2008.

EXTERNAL LINK

https://dx.doi.org/10.1371/journal.pone.0232115

THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

DOI

dx.doi.org/10.17504/protocols.io.bcntiven

EXTERNAL LINK

https://dx.doi.org/10.1371/journal.pone.0232115

PROTOCOL CITATION

Martine Bangratz, Charlotte Tollenaere 2020. Acid nucleic extraction from rice dried leaves. protocols.io

https://dx.doi.org/10.17504/protocols.io.bcntiven

MANUSCRIPT CITATION

please remember to cite the following publication along with this protocol

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Feb 18, 2020

LAST MODIFIED

Apr 15, 2020

PROTOCOL INTEGER ID

33203

Citation: Martine Bangratz, Charlotte Tollenaere (04/15/2020). Acid nucleic extraction from rice dried leaves. https://dx.doi.org/10.17504/protocols.io.bcntiven

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
MATERIALS

- **TE buffer** Contributed by users
- **Isopropanol** Contributed by users
- **NaCl** Sigma-Aldrich Catalog #S-3014
- **Hexadecyltrimethylammonium bromide (CTAB)** Sigma-Aldrich Catalog #H9151
- **1 M Tris/HCl Stock Solution** (dissolved Tris base adjusted to pH 8.0 with HCl) Contributed by users
- **Chloroform: Isoamyl Alcohol (24:1)** Contributed by users
- **Polyvinylpyrrolidone** Sigma-Aldrich Catalog #PVP40
- **ethanol** Contributed by users
- **sodium bisulfite** Sigma Aldrich
- **Na2EDTA** Contributed by users

Waterbath at 65°C
Qiagen TissueLyser II
Microcentrifuge at 4°C

SAFETY WARNINGS

working with chloroform: isoamyl alcohol under a fume hood

BEFORE STARTING

- Put 20-50 mg of dried rice leaves sample into a safe lock tube 2.0 ml containing two stainless steel beads, 5mm.
- Prepare CTAB Extraction Buffer (warm up the buffer for the CTAB dissolution):

 For 100 ml
 - 2 g CTAB (2% w/v)
 - 2 g PVP-40
 - 10 ml 1M Tris-HCl, pH8.0
 - 8.18 g NaCl
 - 744.48 mg EDTA
 - 0.5 g sodium bisulfite (add just before to use)
 - qs 100 ml H2O

 1 Grind the dried leaves with the Qiagen TissueLyser II until obtaining a fine powder

 2 Add 1 ml CTAB extraction buffer (see ‘before start’ for the buffer content) and homogenize by vortexing.

 3 Incubate at 65°C for 30 min. Periodically, mix gently the tubes during the incubation.

 65 °C 00:30:00

 #10000 x g, 4°C, 00:10:00

Citation: Martine Bangratz, Charlotte Tollenaere (04/15/2020). Acid nucleic extraction from rice dried leaves. https://dx.doi.org/10.17504/protocols.io.bcntiven

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
4 Transfer the supernatant (650µl) to a 1.5 ml microcentrifuge tube.

 Add equal volume of chloroform/isoamyl alcohol (24:1)

5 After shaking, 15000 x g, 4°C, 00:10:00

6 Transfer the supernatant (500µl) in a new 1.5 ml tube containing 350 µl of isopropanol (pre-chilled at -20°C).

 Mix gently

 -20 °C 00:30:00

 15000 x g, 4°C, 00:10:00

7 Discard the supernatant. Wash the pellet with 70% ethanol.

 15000 x g, 00:05:00

8 Remove the ethanol and air-dried the pellet.

9 Dissolve the pellet in 50 µl sterile water or TE buffer and conserve the DNA at -20°C.