Apr 11, 2020

Public workspaceA protocol for massively parallel diagnosis and genome sequencing of SARS-CoV-2

  • 1University of Technology Sydney
  • Coronavirus Method Development Community
Icon indicating open access to content
QR code linking to this content
Protocol CitationLeigh G Monahan, Kay Anantanawat, Joyce To, Aaron Darling 2020. A protocol for massively parallel diagnosis and genome sequencing of SARS-CoV-2. protocols.io https://dx.doi.org/10.17504/protocols.io.betrjem6
License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License,  which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Protocol status: In development
This protocol is currently in the early stages of testing. Feedback and suggestions are welcomed.
Created: April 08, 2020
Last Modified: April 11, 2020
Protocol Integer ID: 35409
Abstract
Managing the current COVID-19 pandemic requires diagnostic testing at an unprecedented scale. However, the crisis has revealed severe deficiencies in our capacity to perform such testing. Here we build on the work of others (1-3) to develop a protocol that not only enables many thousand diagnostic tests to be run in parallel, but also provides near-whole genome sequencing data to facilitate phylogenetic analysis and contact tracing. One of the key features of our protocol is a magnetic bead-based strategy for RNA capture that may circumvent the need for SARS-CoV-2 RNA extraction, currently one of the major bottlenecks in both reagent supply and hands-on sample processing time. This approach also eliminates the requirement for per-sample reverse transcription, significantly reducing per-sample costs. 

The major steps in our wet lab workflow can be summarised as follows. First, we generate a collection of bead-bound, single-stranded DNA probes tiling the entire SARS-CoV-2 genome. Multiple uniquely barcoded probe sets are prepared, each of which are used to capture viral RNA directly from patient swab samples via DNA/RNA hybridisation. Samples are combined together at this stage, enabling cDNA synthesis to be performed in a single pooled reaction. Finally, multiplex PCR is used to generate a library of overlapping amplicons ready for Illumina sequencing. 

A schematic overview of the workflow is attached below, along with a more detailed figure depicting the various stages of library preparation.


References



Materials
Reagents

ITEMSUPPLIERCATALOGUE NUMBER
General consumables, chemicals and equipment
UltraPure 1M Tris-HCl pH 7.5Invitrogen15567027
EDTASigma-AldrichEDS-100G
NaClSigma-AldrichS3014-500G
UltraPure DNase/RNase-free distilled water (500 mL)Invitrogen10977015
Ethanol, 200 proof for molecular biology (500 mL)Sigma-AldrichE7023-500mL
DNA LoBind tubes, 1.5 mL (250 tubes)Eppendorf30108051
0.2 mL MAXYMum Recovery Thin Wall PCR TubesFisher BiotecPCR-02-L-C
20X TE buffer - RNase-freeInvitrogenT11493
Sodium citrateSigma-AldrichC8532-100G
NaOHSigma-AldrichS8045-500G
PCR plate - Twintec LoBind DNA (Eppendorf) Sigma-AldrichEP0030129512-25EA
LiClSigma-AldrichL9650-100G
LiDSSigma-AldrichL9781-5G
DTTSigma-AldrichD9779-250MG
PCR foilEppendorf30127790
Step 1: Preparation of barcoded beads for RNA capture
Dynabeads MyOne Streptavidin C1Invitrogen65001
Custom DNA oligosIDT-
2X B&W bufferSee Buffer list-
1X SSC bufferSee Buffer list-
PrimeSTAR GXL Polymerase TaKaRaR050A
Step 2: Sample collection and preparation
Universal Transport Medium (UTM)COPAN306C
Lysis/binding bufferSee Buffer list-
Qubit HS RNA Assay KitInvitrogenQ32855
Qubit tubesInvitrogenQ32856
Step 3: RNA capture
Washing buffer ASee Buffer list-
Step 4: cDNA synthesis
SuperScript™ IV First-Strand Synthesis SystemInvitrogen18091200
Washing buffer BSee Buffer List-
Step 5: Library amplification
Q5 Hot Start HiFi DNA PolymeraseNEBM0493S
Custom DNA oligosIDT-
Qubit dsDNA HS Assay KitInvitrogenQ33230
PrimeSTAR GXL Polymerase TaKaRaR050A
SPRIselect beadsBeckman CoulterB23318
Step 6: Library quantitation and sequencing
Bioanalyzer HS dsDNAAgilent5067-4626
Qubit dsDNA HSInvitrogenQ33230





Buffer list

BUFFER NAMECOMPONENTS
2X B&W buffer10 mM Tris-HCl (pH 7.5)
1 mM EDTA
2 M NaCl
1X SSC buffer0.15 M NaCl
0.015 M sodium citrate
Adjust pH to 7.0 with NaOH
TE buffer10 mM Tris-HCl (pH 7.5)
1 mM EDTA
Lysis/binding buffer100 mM Tris-HCl (pH 7.5)
500 mM LiCl
10 mM EDTA, pH 8
1% LiDS
5 mM dithiothreitol (DTT)
Washing buffer A10 mM Tris-HCl (pH 7.5)
150 mM LiCl
1 mM EDTA
0.1% LiDS
Washing buffer B10 mM Tris-HCl (pH 7.5)
150mM LiCl







Individual primers [version 1]

NAMESEQUENCE
[Biotin]-barcoded bead tether_1/5biosg/TCTAGAGCCACCAGCGGCATAGTAATCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAACGTAATCGGCTCGGGTCGTCTG
[Biotin]-barcoded bead tether_2/5biosg/TCTAGAGCCACCAGCGGCATAGTAATCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTGATTACGGGCTCGGGTCGTCTG
[Biotin]-barcoded bead tether_3/5biosg/TCTAGAGCCACCAGCGGCATAGTAATCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCCGTCATCTGGCTCGGGTCGTCTG
[Biotin]-barcoded bead tether_4/5biosg/TCTAGAGCCACCAGCGGCATAGTAATCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACTAGTTGCGGGCTCGGGTCGTCTG
[Biotin]-barcoded bead tether_5/5biosg/TCTAGAGCCACCAGCGGCATAGTAATCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACCATATAAGGGCTCGGGTCGTCTG
[Biotin]-barcoded bead tether_6/5biosg/TCTAGAGCCACCAGCGGCATAGTAATCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATCTCGATGAGGCTCGGGTCGTCTG
[Biotin]-barcoded bead tether_7/5biosg/TCTAGAGCCACCAGCGGCATAGTAATCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACTTATAGTTGGCTCGGGTCGTCTG
[Biotin]-bead tether/5biosg/TCTAGAGCCACCAGCGGCATAGTAATCGTCGGCAGCGTC
Barcoded linker_1CAGACGACCCGAGCCTACCATGCTTCTGTCTCTTATACACATCTGACGCTGCCGACGA
Barcoded linker_2CAGACGACCCGAGCCAATGGAGCCGCTGTCTCTTATACACATCTGACGCTGCCGACGA
Barcoded linker_3CAGACGACCCGAGCCCTAATCCGGTCTGTCTCTTATACACATCTGACGCTGCCGACGA
Barcoded linker_4CAGACGACCCGAGCCTGCCTAACTCCTGTCTCTTATACACATCTGACGCTGCCGACGA
Barcoded linker_5CAGACGACCCGAGCCAATAGTAGGCCTGTCTCTTATACACATCTGACGCTGCCGACGA
Barcoded linker_6CAGACGACCCGAGCCGCAACTTGGACTGTCTCTTATACACATCTGACGCTGCCGACGA
Barcoded linker_7CAGACGACCCGAGCCGAGATCGTCACTGTCTCTTATACACATCTGACGCTGCCGACGA
Illumina P5 index primer_1AATGATACGGCGACCACCGAGATCTACACTCGCTGAATCGTCGGCAGCGTC
Illumina P5 index primer_2AATGATACGGCGACCACCGAGATCTACACCTCCAGGATCGTCGGCAGCGTC
Illumina P7 index primer_1CAAGCAGAAGACGGCATACGAGATAACCGCGGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
Illumina P7 index primer_2CAAGCAGAAGACGGCATACGAGATGGTTATAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
Illumina P5 flow cell primerAATGATACGGCGACCACCGAGATCTACAC





SARS-CoV-2 probe pool 1 [version 1]

NAMESEQUENCE
ncov_cap_1_RIGHTCAGCACATCTAGGTTTCGTCCGCAGACGACCCGAGCC
ncov_cap_3_RIGHTCCTCATGGTCATGTTATGGTTGAGCCAGACGACCCGAGCC
ncov_cap_5_RIGHTGTTACCCGTGAACTCATGCGTGCAGACGACCCGAGCC
ncov_cap_7_RIGHTGCAGACACCTTTTGAAATTAAATTGGCCAGACGACCCGAGCC
ncov_cap_9_RIGHTGGTGAAACTTCATGGCAGACGGCAGACGACCCGAGCC
ncov_cap_11_RIGHTGTAAGGGTGGTCGCACTATTGCCAGACGACCCGAGCC
ncov_cap_13_RIGHTCTGCTTCCACAAGTGCTTTTGTCAGACGACCCGAGCC
ncov_cap_15_RIGHTCGTGTTTTACAGAAGGCCGCTACAGACGACCCGAGCC
ncov_cap_17_RIGHTAGAGACGGTTGGGAAATTGTTAAATTTCAGACGACCCGAGCC
ncov_cap_19_RIGHTAGAAGAAACTGGCCTACTCATGCCAGACGACCCGAGCC
ncov_cap_21_RIGHTTGGTAACAAACAATACCTTCACACTCACAGACGACCCGAGCC
ncov_cap_23_RIGHTACCACTGGGCATTGATTTAGATGACAGACGACCCGAGCC
ncov_cap_25_RIGHTAGAGCAAGAAGAAGATTGGTTAGATGACAGACGACCCGAGCC
ncov_cap_27_RIGHTGTGGTTGTTAATGCAGCCAATGTCAGACGACCCGAGCC
ncov_cap_29_RIGHTCAGCACGAAGTTCTACTTGCACCAGACGACCCGAGCC
ncov_cap_31_RIGHTACCTTCAGTTGAACAGAGAAAACAAGCAGACGACCCGAGCC
ncov_cap_33_RIGHTAAAGGCTGGTGGCACTACTGAACAGACGACCCGAGCC
ncov_cap_35_RIGHTCAGAAGAAACACGCAAATTAATGCCCAGACGACCCGAGCC
ncov_cap_37_RIGHTAAGTGCCAGCTACAGTTTCTGTCAGACGACCCGAGCC
ncov_cap_39_RIGHTGTTATCACCTTTGACAATCTTAAGACACTCAGACGACCCGAGCC
ncov_cap_41_RIGHTTGATCCTAGTTTTCTGGGTAGGTACACAGACGACCCGAGCC
ncov_cap_43_RIGHTGAAGCTGCTAACTTTTGTGCACTCAGACGACCCGAGCC
ncov_cap_45_RIGHTCGTGTGGTAAACAAGCTACAAAATATCTCAGACGACCCGAGCC
ncov_cap_47_RIGHTCAAAGGTCCTATTACGGATGTTTTCTACCAGACGACCCGAGCC
ncov_cap_49_RIGHTACATTTTTCCCTGACTTAAATGGTGATGCAGACGACCCGAGCC
ncov_cap_51_RIGHTTGAAGAAGTAGTGGAAAATCCTACCATCAGACGACCCGAGCC
ncov_cap_53_RIGHTTGCTGTTAATAGTGTCCCTTGGGCAGACGACCCGAGCC
ncov_cap_55_RIGHTCTCAACCGCTGCTTTAGGTGTTCAGACGACCCGAGCC
ncov_cap_57_RIGHTTGGTTTTTGGCATATATTCTTTTCACTAGGCAGACGACCCGAGCC
ncov_cap_59_RIGHTTCAACTTGTATGATGTGTTACAAACGTAACAGACGACCCGAGCC
ncov_cap_61_RIGHTACAGTGAAGAATGGTTCCATCCATCAGACGACCCGAGCC
ncov_cap_63_RIGHTTGTTACTAGATCAGGCATTAGTGTCTGCAGACGACCCGAGCC
ncov_cap_65_RIGHTAGGGTTTGTTGATTCAGATGTAGAAACCAGACGACCCGAGCC
ncov_cap_67_RIGHTACGAAAACAAATACGTAGTGCTGCCAGACGACCCGAGCC
ncov_cap_69_RIGHTTGTCATGTCTAAACATACTGACTTTTCAAGCAGACGACCCGAGCC
ncov_cap_71_RIGHTATTACGCACAACTAATGGTGACTTTTCAGACGACCCGAGCC
ncov_cap_73_RIGHTACGTTATGTGCTCATGGATGGCCAGACGACCCGAGCC
ncov_cap_75_RIGHTGGTGCTTTGGACATATCAGCATCTCAGACGACCCGAGCC
ncov_cap_77_RIGHTAGCACATATTCAGTGGATGGTTATGTTCAGACGACCCGAGCC
ncov_cap_79_RIGHTTCTAAAGTTGCGTAGTGATGTGCTACAGACGACCCGAGCC
ncov_cap_81_RIGHTCCCATCTGGTAAAGTTGAGGGTTGCAGACGACCCGAGCC
ncov_cap_83_RIGHTGCTTAAGGTTGATACAGCCAATCCTCAGACGACCCGAGCC
ncov_cap_85_RIGHTTCTTTTTGTTACATGCACCATATGGAATTCAGACGACCCGAGCC
ncov_cap_87_RIGHTCCTCTAACACAAGACCATGTTGACACAGACGACCCGAGCC
ncov_cap_89_RIGHTCACACCACTGGTTGTTACTCACACAGACGACCCGAGCC
ncov_cap_91_RIGHTTGCTAGTTGGGTGATGCGTATTCAGACGACCCGAGCC
ncov_cap_93_RIGHTTCTCTGTTACTTCTAACTACTCAGGTGTACAGACGACCCGAGCC
ncov_cap_95_RIGHTACTGACTCTTGGTGTTTATGATTACTTAGTCAGACGACCCGAGCC
ncov_cap_97_RIGHTGGGCTCAATGTGTCCAGTTACACAGACGACCCGAGCC
ncov_cap_99_RIGHTTGCTAATGGTGATTCTGAAGTTGTTCTCAGACGACCCGAGCC
ncov_cap_101_RIGHTGCAAGAGATGGTTGTGTTCCCTCAGACGACCCGAGCC
ncov_cap_103_RIGHTGCATGGCCTCTTATTGTAACAGCCAGACGACCCGAGCC
ncov_cap_105_RIGHTATGGAACTGGTACTATCTATACAGAACTGCAGACGACCCGAGCC
ncov_cap_107_RIGHTACACACACTGGTACTGGTCAGGCAGACGACCCGAGCC
ncov_cap_109_RIGHTAAACACAGTCTGTACCGTCTGCCAGACGACCCGAGCC
ncov_cap_111_RIGHTAGGACGAAGATGACAATTTAATTGATTCTTCAGACGACCCGAGCC
ncov_cap_113_RIGHTGCATTTTGATGAAGGTAATTGTGACACACAGACGACCCGAGCC
ncov_cap_115_RIGHTGGTATGATTTCGGTGATTTCATACAAACCCAGACGACCCGAGCC
ncov_cap_117_RIGHTTGTTAACTGTTTGGATGACAGATGCCAGACGACCCGAGCC
ncov_cap_119_RIGHTTGTATGCTGCTGACCCTGCTATCAGACGACCCGAGCC
ncov_cap_121_RIGHTCCAACAATGTGTGATATCAGACAACTACTCAGACGACCCGAGCC
ncov_cap_123_RIGHTCGTAATGTCATCCCTACTATAACTCAAATGCAGACGACCCGAGCC
ncov_cap_125_RIGHTTTATGGCCTCACTTGTTCTTGCTCAGACGACCCGAGCC
ncov_cap_127_RIGHTAATGCACTTTTATCTACTGATGGTAACAAACAGACGACCCGAGCC
ncov_cap_129_RIGHTGGCTAGCATAAAGAACTTTAAGTCAGTTCAGACGACCCGAGCC
ncov_cap_131_RIGHTGGTACACTTATGATTGAACGGTTCGCAGACGACCCGAGCC
ncov_cap_133_RIGHTACACACCGCATACAGTCTTACAGCAGACGACCCGAGCC
ncov_cap_135_RIGHTTGTGCTAATGGACAAGTTTTTGGTTCAGACGACCCGAGCC
ncov_cap_137_RIGHTTGCTGTCTGACAGAGAATTACATCTTCAGACGACCCGAGCC
ncov_cap_139_RIGHTGCCATTAAGTGCACCTACACTAGTCAGACGACCCGAGCC
ncov_cap_141_RIGHTCGCTGTTGATGCACTATGTGAGACAGACGACCCGAGCC
ncov_cap_143_RIGHTCAATGCCAGATTACGTGCTAAGCCAGACGACCCGAGCC
ncov_cap_145_RIGHTAGGGTGTTATCACGCATGATGTCAGACGACCCGAGCC
ncov_cap_147_RIGHTCAGCTCACTCTTGTAATGTAAACAGATTCAGACGACCCGAGCC
ncov_cap_149_RIGHTTCAAAACTGAAGGTTTATGTGTTGACACAGACGACCCGAGCC
ncov_cap_151_RIGHTTACCTTTACAGCTAGGTTTTTCTACAGGCAGACGACCCGAGCC
ncov_cap_153_RIGHTGGCTTTGAGTTGACATCTATGAAGTATTTTCAGACGACCCGAGCC
ncov_cap_155_RIGHTAGCTAGTTGTGATGCAATCATGACTCAGACGACCCGAGCC
ncov_cap_157_RIGHTGTAGAATGGAAGTTCTATGATGCACAGCAGACGACCCGAGCC
ncov_cap_159_RIGHTCATTCCACACACCAGCTTTTGATAACAGACGACCCGAGCC
ncov_cap_161_RIGHTAGCTTGTGGGTTTACAAACAATTTGACAGACGACCCGAGCC
ncov_cap_163_RIGHTAATGTAGCATTTGAGCTTTGGGCCAGACGACCCGAGCC
ncov_cap_165_RIGHTAGAAATGCCCGTAATGGTGTTCTCAGACGACCCGAGCC
ncov_cap_167_RIGHTAGCTATGGATGAATTCATTGAACGGTACAGACGACCCGAGCC
ncov_cap_169_RIGHTCCCAAGATTTATCTGTAGTTTCTAAGGTTGCAGACGACCCGAGCC
ncov_cap_171_RIGHTGTCGCAAAATATACTCAACTGTGTCACAGACGACCCGAGCC
ncov_cap_173_RIGHTGATCTCATTATTAGTGATATGTACGACCCTCAGACGACCCGAGCC
ncov_cap_175_RIGHTAATTGGATGTAATTATCTTGGCAAACCACAGACGACCCGAGCC
ncov_cap_177_RIGHTTGATGTTCTTGTTAACAACTAAACGAACACAGACGACCCGAGCC
ncov_cap_179_RIGHTTGGGACCAATGGTACTAAGAGGTTCAGACGACCCGAGCC
ncov_cap_181_RIGHTCAAAAGTTGGATGGAAAGTGAGTTCACAGACGACCCGAGCC
ncov_cap_183_RIGHTACTAGGTTTCAAACTTTACTTGCTTTACACAGACGACCCGAGCC
ncov_cap_185_RIGHTAGAGTCCAACCAACAGAATCTATTGTCAGACGACCCGAGCC
ncov_cap_187_RIGHTGCAGATTCATTTGTAATTAGAGGTGATGACAGACGACCCGAGCC
ncov_cap_189_RIGHTATCTATCAGGCCGGTAGCACACCAGACGACCCGAGCC
ncov_cap_191_RIGHTACAAAAAGTTTCTGCCTTTCCAACACAGACGACCCGAGCC
ncov_cap_193_RIGHTCAAACACGTGCAGGCTGTTTAACAGACGACCCGAGCC
ncov_cap_195_RIGHTTCTACCAGTGTCTATGACCAAGACACAGACGACCCGAGCC
ncov_cap_197_RIGHTCCATCAAAACCAAGCAAGAGGTCACAGACGACCCGAGCC
ncov_cap_199_RIGHTTCTGGTTGGACCTTTGGTGCAGCAGACGACCCGAGCC
ncov_cap_201_RIGHTACGCTTGTTAAACAACTTAGCTCCCAGACGACCCGAGCC
ncov_cap_203_RIGHTTGGAAAGGGCTATCATCTTATGTCCTCAGACGACCCGAGCC
ncov_cap_205_RIGHTGTCTGGTAACTGTGATGTTGTAATAGGACAGACGACCCGAGCC
ncov_cap_207_RIGHTCTCATCGATCTCCAAGAACTTGGACAGACGACCCGAGCC
ncov_cap_209_RIGHTGGAACTGTAACTTTGAAGCAAGGTGCAGACGACCCGAGCC
ncov_cap_211_RIGHTAACAGTTTACTCACACCTTTTGCTCCAGACGACCCGAGCC
ncov_cap_213_RIGHTTCATTACTTCAGGTGATGGCACAACAGACGACCCGAGCC
ncov_cap_215_RIGHTCCAATTTATGATGAACCGACGACGCAGACGACCCGAGCC
ncov_cap_217_RIGHTAAAACCTTCTTTTTACGTTTACTCTCGTCAGACGACCCGAGCC
ncov_cap_219_RIGHTTGTCTTCTACAATTTGCCTATGCCACAGACGACCCGAGCC
ncov_cap_221_RIGHTCTTCTCAACGTGCCACTCCATGCAGACGACCCGAGCC
ncov_cap_223_RIGHTGTCGCTACAGGATTGGCAACTATCAGACGACCCGAGCC
ncov_cap_225_RIGHTTGAAGAGCAACCAATGGAGATTGACAGACGACCCGAGCC
ncov_cap_227_RIGHTTGTTCATCAGACAAGAGGAAGTTCACAGACGACCCGAGCC
ncov_cap_229_RIGHTTTTTCTTAGGAATCATCACAACTGTAGCCAGACGACCCGAGCC
ncov_cap_231_RIGHTTGCCAGGAACCTAAATTGGGTAGCAGACGACCCGAGCC
ncov_cap_233_RIGHTGGCCCCAAGGTTTACCCAATAATCAGACGACCCGAGCC
ncov_cap_235_RIGHTTGGACTTCCCTATGGTGCTAACAACAGACGACCCGAGCC
ncov_cap_237_RIGHTTTCAACTCCAGGCAGCAGTAGGCAGACGACCCGAGCC
ncov_cap_239_RIGHTGGTCCAGAACAAACCCAAGGAACAGACGACCCGAGCC
ncov_cap_241_RIGHTCGCATACAAAACATTCCCACCAACCAGACGACCCGAGCC
ncov_cap_243_RIGHTCGTTTTCGCTTTTCCGTTTACGACAGACGACCCGAGCC
ncov_cap_245_RIGHTTGGAAGAGCCCTAATGTGTAAAATTAATTTCAGACGACCCGAGCC
RNAse_P_bead_revGTGGAGACAGCCGCTCACAGACGACCCGAGCC
SARS-CoV-2 probe pool 2 [version 1]

NAMESEQUENCE
ncov_cap_2_RIGHTTCTTAAAGATGGCACTTGTGGCTTCAGACGACCCGAGCC
ncov_cap_4_RIGHTAGGAGCTGGTGGCCATAGTTACCAGACGACCCGAGCC
ncov_cap_6_RIGHTGCTTCATGCACTTTGTCCGAACCAGACGACCCGAGCC
ncov_cap_8_RIGHTTGATGGCTTTATGGGTAGAATTCGACAGACGACCCGAGCC
ncov_cap_10_RIGHTGCTGTTGTTAAAATTTATTGTCCAGCATCAGACGACCCGAGCC
ncov_cap_12_RIGHTTGGAGAAGGTTCCGAAGGTCTTCAGACGACCCGAGCC
ncov_cap_14_RIGHTGGAATATTGGTGAACAGAAATCAATACTGACAGACGACCCGAGCC
ncov_cap_16_RIGHTAGGTGGTGTTGTTCAGTTGACTCAGACGACCCGAGCC
ncov_cap_18_RIGHTTTTGGCTTTGTGTGCTGACTCTCAGACGACCCGAGCC
ncov_cap_20_RIGHTTTAGAACAACCTACTAGTGAAGCTGTTCAGACGACCCGAGCC
ncov_cap_22_RIGHTGCCTATACAGTTGAACTCGGTACAGCAGACGACCCGAGCC
ncov_cap_24_RIGHTTGTGAAGAAGAAGAGTTTGAGCCACAGACGACCCGAGCC
ncov_cap_26_RIGHTGGAACTTACACCAGTTGTTCAGACTCAGACGACCCGAGCC
ncov_cap_28_RIGHTCTTAAAGTGGGTGGTAGTTGTGTTTTCAGACGACCCGAGCC
ncov_cap_30_RIGHTCACAAATGTCTACTTAGCTGTCTTTGATCAGACGACCCGAGCC
ncov_cap_32_RIGHTCAATCTTCATCCAGATTCTGCCACTCAGACGACCCGAGCC
ncov_cap_34_RIGHTCAGTGCTTAAAAAGTGTAAAAGTGCCCAGACGACCCGAGCC
ncov_cap_36_RIGHTGTAAAACAACTGTAGCGTCACTTATCACAGACGACCCGAGCC
ncov_cap_38_RIGHTGTTCCTATAAAGATTGGTCCTATTCTGGACAGACGACCCGAGCC
ncov_cap_40_RIGHTACTTATTTGGATGGAGCTGATGTTACTAACAGACGACCCGAGCC
ncov_cap_42_RIGHTCTTCTATTAAATGGGCAGATAACAACTGTCAGACGACCCGAGCC
ncov_cap_44_RIGHTAAGAGTCTTGAACGTGGTGTGTCAGACGACCCGAGCC
ncov_cap_46_RIGHTTGGTACATTTACTTGTGCTAGTGAGTACAGACGACCCGAGCC
ncov_cap_48_RIGHTAACCAACCATATCCAAACGCAAGCAGACGACCCGAGCC
ncov_cap_50_RIGHTCCTGGTGTATACGTTGTCTTTGGACAGACGACCCGAGCC
ncov_cap_52_RIGHTCACACAGATCTAATGGCTGCTTATGTCAGACGACCCGAGCC
ncov_cap_54_RIGHTGCAAAGAATACTGTTAAGAGTGTCGGTACAGACGACCCGAGCC
ncov_cap_56_RIGHTGTAGTGTTTGTCTTAGTGGTTTAGATTCTTCAGACGACCCGAGCC
ncov_cap_58_RIGHTATGGCCCCGATTTCAGCTATGGCAGACGACCCGAGCC
ncov_cap_60_RIGHTCTGTGCTGGTAGTACATTTATTAGTGATGCAGACGACCCGAGCC
ncov_cap_62_RIGHTAGCTAATAACACTAAAGGTTCATTGCCTACAGACGACCCGAGCC
ncov_cap_64_RIGHTACTCAAAACACTAGTTGCAACTGCCAGACGACCCGAGCC
ncov_cap_66_RIGHTGCTTGTATTGACTGTAGTGCGCCAGACGACCCGAGCC
ncov_cap_68_RIGHTAGCACTTAAGGGTGGTAAAATTGTTAATCAGACGACCCGAGCC
ncov_cap_70_RIGHTGCTGATTTTGACACATGGTTTAGCCCAGACGACCCGAGCC
ncov_cap_72_RIGHTGTGTTTTGGCTGCTGAATGTACACAGACGACCCGAGCC
ncov_cap_74_RIGHTGCTGGTGTTTGTGTATCTACTAGTGGCAGACGACCCGAGCC
ncov_cap_76_RIGHTGAGCTTTTGGTGAATACAGTCATGTAGCAGACGACCCGAGCC
ncov_cap_78_RIGHTTCCACAAAGCATTTCTATTGGTTCTTTCAGACGACCCGAGCC
ncov_cap_80_RIGHTGCTTGTTGTCATCTCGCAAAGGCAGACGACCCGAGCC
ncov_cap_82_RIGHTTGAAGACATGCTTAACCCTAATTATGAAGACAGACGACCCGAGCC
ncov_cap_84_RIGHTTGCTATGAGGCCCAATTTCACTCAGACGACCCGAGCC
ncov_cap_86_RIGHTTTTTAGCTTGGTTGTACGCTGCCAGACGACCCGAGCC
ncov_cap_88_RIGHTCCATATTGGGTAGTGCTTTATTAGAAGATGCAGACGACCCGAGCC
ncov_cap_90_RIGHTTGTCTGCTTTTGCAATGATGTTTGTCAGACGACCCGAGCC
ncov_cap_92_RIGHTACTGTGTATGATGATGGTGCTAGGCAGACGACCCGAGCC
ncov_cap_94_RIGHTTGCCCTATTTTCTTCATAACTGGTAATACACAGACGACCCGAGCC
ncov_cap_96_RIGHTGGCAAACCTTGTATCAAAGTAGCCCAGACGACCCGAGCC
ncov_cap_98_RIGHTGCTTTGTGAAGAAATGCTGGACACAGACGACCCGAGCC
ncov_cap_100_RIGHTTGACCCAAATGTATAAACAGGCTAGACAGACGACCCGAGCC
ncov_cap_102_RIGHTAAATACGTGTGATGGTACAACATTTACTTCAGACGACCCGAGCC
ncov_cap_104_RIGHTACAAACTGCTTGCACTGATGACACAGACGACCCGAGCC
ncov_cap_106_RIGHTCTTGGTAGTTTAGCTGCCACAGTCAGACGACCCGAGCC
ncov_cap_108_RIGHTTTTGGTGGTGCATCGTGTTGTCCAGACGACCCGAGCC
ncov_cap_110_RIGHTGTATACAGGGCTTTTGACATCTACAATGCAGACGACCCGAGCC
ncov_cap_112_RIGHTAATAGACGGTGACATGGTACCACCAGACGACCCGAGCC
ncov_cap_114_RIGHTCGCCAACTTAGGTGAACGTGTACAGACGACCCGAGCC
ncov_cap_116_RIGHTTGTTGACACTGACTTAACAAAGCCTTCAGACGACCCGAGCC
ncov_cap_118_RIGHTGTGAGAAAAATATTTGTTGATGGTGTTCCCAGACGACCCGAGCC
ncov_cap_120_RIGHTGCTTTTCAAACTGTCAAACCCGGCAGACGACCCGAGCC
ncov_cap_122_RIGHTCCTAGACAAATCAGCTGGTTTTCCACAGACGACCCGAGCC
ncov_cap_124_RIGHTTTGGAACAAGCAAATTCTATGGTGGCAGACGACCCGAGCC
ncov_cap_126_RIGHTTCACTATATGTTAAACCAGGTGGAACCCAGACGACCCGAGCC
ncov_cap_128_RIGHTAGACTTTGTGAATGAGTTTTACGCATCAGACGACCCGAGCC
ncov_cap_130_RIGHTCTCTCAACATACAATGCTAGTTAAACAGGCAGACGACCCGAGCC
ncov_cap_132_RIGHTAAGCTACATGATGAGTTAACAGGACACAGACGACCCGAGCC
ncov_cap_134_RIGHTTCTTGTCTGTTAATCCGTATGTTTGCCAGACGACCCGAGCC
ncov_cap_136_RIGHTTTTAGCTAACACCTGTACTGAAAGACTCAGACGACCCGAGCC
ncov_cap_138_RIGHTCAAATAGGAGAGTACACCTTTGAAAAAGGCAGACGACCCGAGCC
ncov_cap_140_RIGHTAAGGTTGGTATGCAAAAGTATTCTACACCAGACGACCCGAGCC
ncov_cap_142_RIGHTGTACTGTAAATGCATTGCCTGAGACCAGACGACCCGAGCC
ncov_cap_144_RIGHTTAGGTCCAGACATGTTCCTCGGCAGACGACCCGAGCC
ncov_cap_146_RIGHTGCCTCAAAGATTTTGGGACTACCACAGACGACCCGAGCC
ncov_cap_148_RIGHTCGTAGGAATGTGGCAACTTTACAAGCAGACGACCCGAGCC
ncov_cap_150_RIGHTCCCGCGAAGAAGCTATAAGACACAGACGACCCGAGCC
ncov_cap_152_RIGHTCCTCATACCACTTATGTACAAAGGACTCAGACGACCCGAGCC
ncov_cap_154_RIGHTGCATCATTCTATTGGATTTGATTACGTCTCAGACGACCCGAGCC
ncov_cap_156_RIGHTCTTGTAGAAAGGTTCAACACATGGTTCAGACGACCCGAGCC
ncov_cap_158_RIGHTTGCAATGTCGATAGATATCCTGCTAACAGACGACCCGAGCC
ncov_cap_160_RIGHTCCACTAAAGTCTGCTACGTGTATAACACAGACGACCCGAGCC
ncov_cap_162_RIGHTTGATGGACAACAGGGTGAAGTACCAGACGACCCGAGCC
ncov_cap_164_RIGHTCTCCAGCACATATATCTACTATTGGTGTCAGACGACCCGAGCC
ncov_cap_166_RIGHTAGAAGCCGTAAAAACACAGTTCAATTCAGACGACCCGAGCC
ncov_cap_168_RIGHTTGGTTTACATCTACTGATTGGACTAGCCAGACGACCCGAGCC
ncov_cap_170_RIGHTAATCTAGTCAAGCGTGGCAACCCAGACGACCCGAGCC
ncov_cap_172_RIGHTTTGCACCAGGTACAGCTGTTTTCAGACGACCCGAGCC
ncov_cap_174_RIGHTTGGAGGTTCCGTGGCTATAAAGATCAGACGACCCGAGCC
ncov_cap_176_RIGHTCAAATCCAATTCAGTTGTCTTCCTATTCTCAGACGACCCGAGCC
ncov_cap_178_RIGHTCAGTGTGTTAATCTTACAACCAGAACTCCAGACGACCCGAGCC
ncov_cap_180_RIGHTTTCGAAGACCCAGTCCCTACTTCAGACGACCCGAGCC
ncov_cap_182_RIGHTGCCTATTAATTTAGTGCGTGATCTCCCAGACGACCCGAGCC
ncov_cap_184_RIGHTTGAAAATGGAACCATTACAGATGCTGCAGACGACCCGAGCC
ncov_cap_186_RIGHTACTGTGTTGCTGATTATTCTGTCCTCAGACGACCCGAGCC
ncov_cap_188_RIGHTCGTTATAGCTTGGAATTCTAACAATCTTGACAGACGACCCGAGCC
ncov_cap_190_RIGHTTTCTTTTGAACTTCTACATGCACCAGCAGACGACCCGAGCC
ncov_cap_192_RIGHTAACAAATACTTCTAACCAGGTTGCTGCAGACGACCCGAGCC
ncov_cap_194_RIGHTACGTAGTGTAGCTAGTCAATCCATCACAGACGACCCGAGCC
ncov_cap_196_RIGHTACTGGAATAGCTGTTGAACAAGACACAGACGACCCGAGCC
ncov_cap_198_RIGHTATTGCTGCTAGAGACCTCATTTGTCAGACGACCCGAGCC
ncov_cap_200_RIGHTGAACCAAAAATTGATTGCCAACCAATCAGACGACCCGAGCC
ncov_cap_202_RIGHTAAGTTTGCAGACATATGTGACTCAACCAGACGACCCGAGCC
ncov_cap_204_RIGHTTGGAAAAGCACACTTTCCTCGTCAGACGACCCGAGCC
ncov_cap_206_RIGHTTTGATTTAGGTGACATCTCTGGCACAGACGACCCGAGCC
ncov_cap_208_RIGHTGCTGTATGACCAGTTGCTGTAGTCAGACGACCCGAGCC
ncov_cap_210_RIGHTCTTATTGTTGGCGTTGCACTTCTTCAGACGACCCGAGCC
ncov_cap_212_RIGHTGCCGTTCCAAAAACCCATTACTTCAGACGACCCGAGCC
ncov_cap_214_RIGHTTGTATTACACAGTTACTTCACTTCAGACTCAGACGACCCGAGCC
ncov_cap_216_RIGHTTTCTTGCTTTCGTGGTATTCTTGCCAGACGACCCGAGCC
ncov_cap_218_RIGHTCATGGCAGATTCCAACGGTACTCAGACGACCCGAGCC
ncov_cap_220_RIGHTGGATCACCGGTGGAATTGCTATCAGACGACCCGAGCC
ncov_cap_222_RIGHTACGCTGTGACATCAAGGACCTGCAGACGACCCGAGCC
ncov_cap_224_RIGHTGTTGACTTTCAGGTTACTATAGCAGAGACAGACGACCCGAGCC
ncov_cap_226_RIGHTATTCACCATTTCATCCTCTAGCTGATCAGACGACCCGAGCC
ncov_cap_228_RIGHTATTTGTGCTTTTTAGCCTTTCTGCTACAGACGACCCGAGCC
ncov_cap_230_RIGHTCGTGTCCTATTCACTTCTATTCTAAATGGCAGACGACCCGAGCC
ncov_cap_232_RIGHTCCCAAAATCAGCGAAATGCACCCAGACGACCCGAGCC
ncov_cap_234_RIGHTGCAGTCCAGATGACCAAATTGGCCAGACGACCCGAGCC
ncov_cap_236_RIGHTCCTCAAGGAACAACATTGCCAAACAGACGACCCGAGCC
ncov_cap_238_RIGHTACAACAACAAGGCCAAACTGTCCAGACGACCCGAGCC
ncov_cap_240_RIGHTATTGGCATGGAAGTCACACCTTCAGACGACCCGAGCC
ncov_cap_242_RIGHTTTCTTCCTGCTGCAGATTTGGACAGACGACCCGAGCC
ncov_cap_244_RIGHTAGTGTGTAACATTAGGGAGGACTTGCAGACGACCCGAGCC
RNAse_P_bead_revGTGGAGACAGCCGCTCACAGACGACCCGAGCC
SARS-CoV-2 primer pool 1 [version 1]

NAMESEQUENCE
ncov_cap_1_LEFTACGTGTGCTCTTCCGATCTTCTCTTGTAGATCTGTTCTCTAAACGAAC
ncov_cap_3_LEFTACGTGTGCTCTTCCGATCTCTGTTTTACAGGTTCGCGACGT
ncov_cap_5_LEFTACGTGTGCTCTTCCGATCTCCTCATGTGGGCGAAATACCAG
ncov_cap_7_LEFTACGTGTGCTCTTCCGATCTATGGCTACCCTCTTGAGTGCAT
ncov_cap_9_LEFTACGTGTGCTCTTCCGATCTGGGGAATGTCCAAATTTTGTATTTCCC
ncov_cap_11_LEFTACGTGTGCTCTTCCGATCTCCACTTGCGAATTTTGTGGCAC
ncov_cap_13_LEFTACGTGTGCTCTTCCGATCTCTATTGGGTTCCACGTGCTAGC
ncov_cap_15_LEFTACGTGTGCTCTTCCGATCTTCAAACAAATTGTTGAATCCTGTGGT
ncov_cap_17_LEFTACGTGTGCTCTTCCGATCTTGTTCACATCTGATTTGGCTACTAACA
ncov_cap_19_LEFTACGTGTGCTCTTCCGATCTCCTGTGCAAAGGAAATTAAGGAGAGT
ncov_cap_21_LEFTACGTGTGCTCTTCCGATCTTCCCACAGAAGTGTTAACAGAGGA
ncov_cap_23_LEFTACGTGTGCTCTTCCGATCTAGTGCAAGGTTACAAGAGTGTGA
ncov_cap_25_LEFTACGTGTGCTCTTCCGATCTGGCTTCACATATGTATTGTTCTTTCTACC
ncov_cap_27_LEFTACGTGTGCTCTTCCGATCTAGGACAATCAGACAACTACTATTCAAACA
ncov_cap_29_LEFTACGTGTGCTCTTCCGATCTGGCTACTAACAATGCCATGCAAG
ncov_cap_31_LEFTACGTGTGCTCTTCCGATCTTAAGAGTTTGTGTAGATACTGTTCGCA
ncov_cap_33_LEFTACGTGTGCTCTTCCGATCTTCTGGAAGAAACTAAGTTCCTCACAG
ncov_cap_35_LEFTACGTGTGCTCTTCCGATCTTTATATAACCACTTACCCGGGTCAGG
ncov_cap_37_LEFTACGTGTGCTCTTCCGATCTACAAGAGGGTGTGGTTGATTATGG
ncov_cap_39_LEFTACGTGTGCTCTTCCGATCTACTTCTTCTTCTAAAACACCTGAAGAACA
ncov_cap_41_LEFTACGTGTGCTCTTCCGATCTCGCAAGTTGTGGACATGTCAATG
ncov_cap_43_LEFTACGTGTGCTCTTCCGATCTTGTCAGCATTAAATCACACTAAAAAGTGG
ncov_cap_45_LEFTACGTGTGCTCTTCCGATCTAATGAGTTACTTGTTTCAACATGCCA
ncov_cap_47_LEFTACGTGTGCTCTTCCGATCTACCTTTTGTTATGATGTCAGCACCA
ncov_cap_49_LEFTACGTGTGCTCTTCCGATCTAGAAAGACAATTCTTATTTCACAGAGCAA
ncov_cap_51_LEFTACGTGTGCTCTTCCGATCTTGTTTGGCATGTTAACAATGCAACT
ncov_cap_53_LEFTACGTGTGCTCTTCCGATCTACCGAAGTTGTAGGAGACATTATACTTAA
ncov_cap_55_LEFTACGTGTGCTCTTCCGATCTAATTCTAGAATTAAAGCATCTATGCCGAC
ncov_cap_57_LEFTACGTGTGCTCTTCCGATCTTTGAACTCTACTAATGTCACTATTGCAACC
ncov_cap_59_LEFTACGTGTGCTCTTCCGATCTGCAATTGTTTTTCAGCTATTTTGCAGT
ncov_cap_61_LEFTACGTGTGCTCTTCCGATCTTGTCTATGCTAATGGAGGTAAAGGC
ncov_cap_63_LEFTACGTGTGCTCTTCCGATCTAAGACTTATGAAAGACATTCTCTCTCTCA
ncov_cap_65_LEFTACGTGTGCTCTTCCGATCTTAGTGCGGAAGTTGCAGTTAAAATG
ncov_cap_67_LEFTACGTGTGCTCTTCCGATCTGCGATAGTTGTAATAACTATATGCTCACC
ncov_cap_69_LEFTACGTGTGCTCTTCCGATCTACTTACCTTTTAAGTTGACATGTGCAA
ncov_cap_71_LEFTACGTGTGCTCTTCCGATCTTCACTCGTGACATAGCATCTACAGA
ncov_cap_73_LEFTACGTGTGCTCTTCCGATCTAACATCTGTTACACACCATCAAAACTT
ncov_cap_75_LEFTACGTGTGCTCTTCCGATCTTTCTGAGTACTGTAGGCACGGC
ncov_cap_77_LEFTACGTGTGCTCTTCCGATCTATGAGGTTTAGAAGAGCTTTTGGTGA
ncov_cap_79_LEFTACGTGTGCTCTTCCGATCTTGTTCACACCTTTAGTACCTTTCTGG
ncov_cap_81_LEFTACGTGTGCTCTTCCGATCTAGTACAAGTATTTTAGTGGAGCAATGGA
ncov_cap_83_LEFTACGTGTGCTCTTCCGATCTAACGGTCTTTGGCTTGATGACG
ncov_cap_85_LEFTACGTGTGCTCTTCCGATCTTAAGTTTGTTCGCATTCAACCAGGA
ncov_cap_87_LEFTACGTGTGCTCTTCCGATCTTGGACCTTTTGTTGACAGGCAA
ncov_cap_89_LEFTACGTGTGCTCTTCCGATCTGGAATTGCCGTTTTAGATATGTGTGC
ncov_cap_91_LEFTACGTGTGCTCTTCCGATCTGTCCAGAGTACTCAATGGTCTTTGT
ncov_cap_93_LEFTACGTGTGCTCTTCCGATCTACTGTGTTATGTATGCATCAGCTGT
ncov_cap_95_LEFTACGTGTGCTCTTCCGATCTACAACTGTCATGTTTTTGGCCAG
ncov_cap_97_LEFTACGTGTGCTCTTCCGATCTACTACTCCCACCCAAGAATAGCA
ncov_cap_99_LEFTACGTGTGCTCTTCCGATCTTGGTTTCACTACTTTCTGTTTTGCTT
ncov_cap_101_LEFTACGTGTGCTCTTCCGATCTAATTTGACCGTGATGCAGCCAT
ncov_cap_103_LEFTACGTGTGCTCTTCCGATCTACCTCTTACAACAGCAGCCAAAC
ncov_cap_105_LEFTACGTGTGCTCTTCCGATCTGCTTAGTCCTGTTGCACTACGAC
ncov_cap_107_LEFTACGTGTGCTCTTCCGATCTGGTATGGTACTTGGTAGTTTAGCTGC
ncov_cap_109_LEFTACGTGTGCTCTTCCGATCTTCAGGCAATAACAGTTACACCGG
ncov_cap_111_LEFTACGTGTGCTCTTCCGATCTAGTCAGCTGATGCACAATCGTT
ncov_cap_113_LEFTACGTGTGCTCTTCCGATCTACACTTTCTCTAACTACCAACATGAAGA
ncov_cap_115_LEFTACGTGTGCTCTTCCGATCTAAGGACTGGTATGATTTTGTAGAAAACCC
ncov_cap_117_LEFTACGTGTGCTCTTCCGATCTTGTTAATGCCTATATTAACCTTGACCAGG
ncov_cap_119_LEFTACGTGTGCTCTTCCGATCTTGTTTTATTCTCTACAGTGTTCCCACC
ncov_cap_121_LEFTACGTGTGCTCTTCCGATCTTGTTGCTTTTCAAACTGTCAAACCC
ncov_cap_123_LEFTACGTGTGCTCTTCCGATCTGATAAGTACTTTGATTGTTACGATGGTGG
ncov_cap_125_LEFTACGTGTGCTCTTCCGATCTTCAAAAATTATTGAAATCAATAGCCGCCA
ncov_cap_127_LEFTACGTGTGCTCTTCCGATCTTGTAGCTTGTCACACCGTTTCT
ncov_cap_129_LEFTACGTGTGCTCTTCCGATCTTGTCCGCAATTTACAACACAGACT
ncov_cap_131_LEFTACGTGTGCTCTTCCGATCTATGTCTGAAGCAAAATGTTGGACTG
ncov_cap_133_LEFTACGTGTGCTCTTCCGATCTATGCTTACCCACTTACTAAACATCCT
ncov_cap_135_LEFTACGTGTGCTCTTCCGATCTGTTGTAAATGCTGTTACGACCATGT
ncov_cap_137_LEFTACGTGTGCTCTTCCGATCTAGCGATAATGTTACTGACTTTAATGCAA
ncov_cap_139_LEFTACGTGTGCTCTTCCGATCTCCACTTAACCGAAATTATGTCTTTACTGG
ncov_cap_141_LEFTACGTGTGCTCTTCCGATCTACCCAACACTCAATATCTCAGATGAG
ncov_cap_143_LEFTACGTGTGCTCTTCCGATCTAATGTAGTAGAATTATACCTGCACGTGC
ncov_cap_145_LEFTACGTGTGCTCTTCCGATCTACCAGAATATTTCAATTCAGTGTGTAGAC
ncov_cap_147_LEFTACGTGTGCTCTTCCGATCTGGTAAGAGAATTCCTTACACGTAACCC
ncov_cap_149_LEFTACGTGTGCTCTTCCGATCTCTGATAGAGACCTTTATGACAAGTTGCA
ncov_cap_151_LEFTACGTGTGCTCTTCCGATCTAGGACATGACCTATAGAAGACTCATCT
ncov_cap_153_LEFTACGTGTGCTCTTCCGATCTTTTTCCAGAGTTAGTGCTAAACCACC
ncov_cap_155_LEFTACGTGTGCTCTTCCGATCTTAGACGTGCCACATGCTTTTCC
ncov_cap_157_LEFTACGTGTGCTCTTCCGATCTTGTTAAGCGTGTTGACTGGACT
ncov_cap_159_LEFTACGTGTGCTCTTCCGATCTCTATTCTTATGCCACACATTCTGACAAA
ncov_cap_161_LEFTACGTGTGCTCTTCCGATCTTCTGACAGTCCATGTGAGTCTCA
ncov_cap_163_LEFTACGTGTGCTCTTCCGATCTTGGAACACTTTTACAAGACTTCAGAGT
ncov_cap_165_LEFTACGTGTGCTCTTCCGATCTGGGTGTGGACATTGCTGCTAAT
ncov_cap_167_LEFTACGTGTGCTCTTCCGATCTAACAAGCTAGTCTTAATGGAGTCACA
ncov_cap_169_LEFTACGTGTGCTCTTCCGATCTTCTACTGATTGGACTAGCTAAACGTTT
ncov_cap_171_LEFTACGTGTGCTCTTCCGATCTTGGTGTAAAGATGGCCATGTAGAA
ncov_cap_173_LEFTACGTGTGCTCTTCCGATCTCATTTTGGTGCTGGTTCTGATAAAGG
ncov_cap_175_LEFTACGTGTGCTCTTCCGATCTTTCACTTACATTTGTGGGTTTATACAACA
ncov_cap_177_LEFTACGTGTGCTCTTCCGATCTACAAATCCAATTCAGTTGTCTTCCTATTC
ncov_cap_179_LEFTACGTGTGCTCTTCCGATCTAGTCAGTGTGTTAATCTTACAACCAGA
ncov_cap_181_LEFTACGTGTGCTCTTCCGATCTTTTGCTTCCACTGAGAAGTCTAACA
ncov_cap_183_LEFTACGTGTGCTCTTCCGATCTACCTTGAAGGAAAACAGGGTAATTTCA
ncov_cap_185_LEFTACGTGTGCTCTTCCGATCTTGCTGCAGCTTATTATGTGGGT
ncov_cap_187_LEFTACGTGTGCTCTTCCGATCTAGTTTTTAACGCCACCAGATTTGC
ncov_cap_189_LEFTACGTGTGCTCTTCCGATCTGGCAAACTGGAAAGATTGCTGAT
ncov_cap_191_LEFTACGTGTGCTCTTCCGATCTACCCACTAATGGTGTTGGTTACC
ncov_cap_193_LEFTACGTGTGCTCTTCCGATCTTCTTGACATTACACCATGTTCTTTTGG
ncov_cap_195_LEFTACGTGTGCTCTTCCGATCTAGGTATATGCGCTAGTTATCAGACTCA
ncov_cap_197_LEFTACGTGTGCTCTTCCGATCTCAATCTTTTGTTGCAATATGGCAGTTT
ncov_cap_199_LEFTACGTGTGCTCTTCCGATCTAAGTGACACTTGCAGATGCTGG
ncov_cap_201_LEFTACGTGTGCTCTTCCGATCTTGGCTTATAGGTTTAATGGTATTGGAGT
ncov_cap_203_LEFTACGTGTGCTCTTCCGATCTACAAAGTTGAGGCTGAAGTGCA
ncov_cap_205_LEFTACGTGTGCTCTTCCGATCTACTTATGTCCCTGCACAAGAAAAGA
ncov_cap_207_LEFTACGTGTGCTCTTCCGATCTTGATCCTTTGCAACCTGAATTAGACT
ncov_cap_209_LEFTACGTGTGCTCTTCCGATCTTGGTGACAATTATGCTTTGCTGTATG
ncov_cap_211_LEFTACGTGTGCTCTTCCGATCTGTTCGCGCTACTGCAACGATAC
ncov_cap_213_LEFTACGTGTGCTCTTCCGATCTATGCTTTAGTCTACTTCTTGCAGAGT
ncov_cap_215_LEFTACGTGTGCTCTTCCGATCTACACAGTTACTTCACTTCAGACTATTACC
ncov_cap_217_LEFTACGTGTGCTCTTCCGATCTACAAGCTGATGAGTACGAACTTATGT
ncov_cap_219_LEFTACGTGTGCTCTTCCGATCTTCTAGAGTTCCTGATCTTCTGGTCT
ncov_cap_221_LEFTACGTGTGCTCTTCCGATCTGGCCAGTAACTTTAGCTTGTTTTGT
ncov_cap_223_LEFTACGTGTGCTCTTCCGATCTGTAATCGGAGCTGTGATCCTTCG
ncov_cap_225_LEFTACGTGTGCTCTTCCGATCTTGCTTGTACAGTAAGTGACAACAGA
ncov_cap_227_LEFTACGTGTGCTCTTCCGATCTACAACAGTACTTTTAAAAGAACCTTGCT
ncov_cap_229_LEFTACGTGTGCTCTTCCGATCTTGCTTCACACTCAAAAGAAAGACAGA
ncov_cap_231_LEFTACGTGTGCTCTTCCGATCTTGTAGTTGATGACCCGTGTCCT
ncov_cap_233_LEFTACGTGTGCTCTTCCGATCTAGAGTATCATGACGTTCGTGTTGT
ncov_cap_235_LEFTACGTGTGCTCTTCCGATCTAGGAAGACCTTAAATTCCCTCGAGG
ncov_cap_237_LEFTACGTGTGCTCTTCCGATCTTGAGGGAGCCTTGAATACACCA
ncov_cap_239_LEFTACGTGTGCTCTTCCGATCTCTCTTGCTTTGCTGCTGCTTGA
ncov_cap_241_LEFTACGTGTGCTCTTCCGATCTCATTGGCCGCAAATTGCACAAT
ncov_cap_243_LEFTACGTGTGCTCTTCCGATCTAGGCTGATGAAACTCAAGCCTT
ncov_cap_245_LEFTACGTGTGCTCTTCCGATCTTGAATTCTCGTAACTACATAGCACAAGT
RNAse_P_LEFTACGTGTGCTCTTCCGATCTGATTTGGACCTGCGAGCG
SARS-CoV-2 primer pool 2 [version 1]

NAMESEQUENCE
ncov_cap_2_LEFTACGTGTGCTCTTCCGATCTTCAGCACATCTAGGTTTCGTCC
ncov_cap_4_LEFTACGTGTGCTCTTCCGATCTCATCAAACGTTCGGATGCTCGA
ncov_cap_6_LEFTACGTGTGCTCTTCCGATCTTGGCACTGATCCTTATGAAGATTTTCA
ncov_cap_8_LEFTACGTGTGCTCTTCCGATCTGCATGAAATTGCTTGGTACACGG
ncov_cap_10_LEFTACGTGTGCTCTTCCGATCTGCGTCACCAAATGAATGCAACC
ncov_cap_12_LEFTACGTGTGCTCTTCCGATCTACCTGAGCATAGTCTTGCCGAA
ncov_cap_14_LEFTACGTGTGCTCTTCCGATCTGTGACTTTAAACTTAATGAAGAGATCGCC
ncov_cap_16_LEFTACGTGTGCTCTTCCGATCTTGTACGATCAATTTTCTCCCGCA
ncov_cap_18_LEFTACGTGTGCTCTTCCGATCTAAACCCGTCCTTGATTGGCTTG
ncov_cap_20_LEFTACGTGTGCTCTTCCGATCTTTTGTCACGCACTCAAAGGGAT
ncov_cap_22_LEFTACGTGTGCTCTTCCGATCTGCCCTTGCACCTAATATGATGGT
ncov_cap_24_LEFTACGTGTGCTCTTCCGATCTTGCTGTCATAAAAACTTTGCAACCA
ncov_cap_26_LEFTACGTGTGCTCTTCCGATCTGGTAAACCTTTGGAATTTGGTGCC
ncov_cap_28_LEFTACGTGTGCTCTTCCGATCTACATTAAAAATGCAGACATTGTGGAAGA
ncov_cap_30_LEFTACGTGTGCTCTTCCGATCTTGTCTTCATGTTGTCGGCCCAA
ncov_cap_32_LEFTACGTGTGCTCTTCCGATCTAAGATCGCTGAGATTCCTAAAGAGG
ncov_cap_34_LEFTACGTGTGCTCTTCCGATCTGTGGGTGATGTTGTTCAAGAGGG
ncov_cap_36_LEFTACGTGTGCTCTTCCGATCTTGGAACTGTTTCTTGGAATTTGCG
ncov_cap_38_LEFTACGTGTGCTCTTCCGATCTTGTAACACATGGCTTAAATTTGGAAGAA
ncov_cap_40_LEFTACGTGTGCTCTTCCGATCTTCCTACCACATTCCACCTAGATGG
ncov_cap_42_LEFTACGTGTGCTCTTCCGATCTAACCTCATAATTCACATGAAGGTAAAACA
ncov_cap_44_LEFTACGTGTGCTCTTCCGATCTAGAGTTGAAGTTTAATCCACCTGCT
ncov_cap_46_LEFTACGTGTGCTCTTCCGATCTCCTTAAGGGTGTAGAAGCTGTTATGT
ncov_cap_48_LEFTACGTGTGCTCTTCCGATCTCCTCAGAATACAAAGGTCCTATTACGG
ncov_cap_50_LEFTACGTGTGCTCTTCCGATCTAGAAACCTGCTTCAAGAGAGCTT
ncov_cap_52_LEFTACGTGTGCTCTTCCGATCTGGGAATGGATAATCTTGCCTGCG
ncov_cap_54_LEFTACGTGTGCTCTTCCGATCTTGCTAAGCCTTTTCTTAACAAAGTTGT
ncov_cap_56_LEFTACGTGTGCTCTTCCGATCTTGGTTTTTACTATTAAGTGTTTGCCTAGGT
ncov_cap_58_LEFTACGTGTGCTCTTCCGATCTAATGGGATTTAACTGCTTTTGGCTT
ncov_cap_60_LEFTACGTGTGCTCTTCCGATCTGCATGTTGTAGACGGTTGTAATTCA
ncov_cap_62_LEFTACGTGTGCTCTTCCGATCTGACTTGTCACTACAGTTTAAAAGACCAA
ncov_cap_64_LEFTACGTGTGCTCTTCCGATCTAGAATCATCTGCAAAATCAGCGTCT
ncov_cap_66_LEFTACGTGTGCTCTTCCGATCTCTACTTTTATTTCAGCAGCTCGGC
ncov_cap_68_LEFTACGTGTGCTCTTCCGATCTGCGCAGGTAGCAAAAAGTCACA
ncov_cap_70_LEFTACGTGTGCTCTTCCGATCTGCAGTTAATTAAAGTTACACTTGTGTTCC
ncov_cap_72_LEFTACGTGTGCTCTTCCGATCTTGCTGCAGTCATAACAAGAGAAGT
ncov_cap_74_LEFTACGTGTGCTCTTCCGATCTACCAATGTACTAGAAGGTTCTGTTGC
ncov_cap_76_LEFTACGTGTGCTCTTCCGATCTGATCTTTACCAGGAGTTTTCTGTGGT
ncov_cap_78_LEFTACGTGTGCTCTTCCGATCTACTGTACTCTGTTTAACACCAGTTTACT
ncov_cap_80_LEFTACGTGTGCTCTTCCGATCTCCTTTAGTACTTTTGAAGAAGCTGCG
ncov_cap_82_LEFTACGTGTGCTCTTCCGATCTCCACAAACCTCTATCACCTCAGC
ncov_cap_84_LEFTACGTGTGCTCTTCCGATCTGGCTGGTAATGTTCAACTCAGGG
ncov_cap_86_LEFTACGTGTGCTCTTCCGATCTTGGTTCATGTGGTAGTGTTGGTT
ncov_cap_88_LEFTACGTGTGCTCTTCCGATCTACCACAACTCTTAATGACTTTAACCTTGT
ncov_cap_90_LEFTACGTGTGCTCTTCCGATCTACAATGCTCAGGTGTTACTTTCCA
ncov_cap_92_LEFTACGTGTGCTCTTCCGATCTTTACCTTCTCTTGCCACTGTAGCT
ncov_cap_94_LEFTACGTGTGCTCTTCCGATCTACACTTATGAATGTCTTGACACTCGT
ncov_cap_96_LEFTACGTGTGCTCTTCCGATCTTGTACTTGTTACTTTGGCCTCTTTTGT
ncov_cap_98_LEFTACGTGTGCTCTTCCGATCTAGTCTTACTCTCAGTTTTGCAACAACT
ncov_cap_100_LEFTACGTGTGCTCTTCCGATCTGTTCCCTTCCATCATATGCAGCT
ncov_cap_102_LEFTACGTGTGCTCTTCCGATCTGGGCAAAAGTTACTAGTGCTATGCA
ncov_cap_104_LEFTACGTGTGCTCTTCCGATCTCAGGTTGTAGATGCAGATAGTAAAATTGT
ncov_cap_106_LEFTACGTGTGCTCTTCCGATCTTGCACTGTTATCCGATTTACAGGA
ncov_cap_108_LEFTACGTGTGCTCTTCCGATCTAAGTGCCTGCCAATTCAACTGT
ncov_cap_110_LEFTACGTGTGCTCTTCCGATCTAAAAACACAGTCTGTACCGTCTGC
ncov_cap_112_LEFTACGTGTGCTCTTCCGATCTAATTCCTAAAAACTAATTGTTGTCGCTTCC
ncov_cap_114_LEFTACGTGTGCTCTTCCGATCTTCAACGTCTTACTAAATACACAATGGCA
ncov_cap_116_LEFTACGTGTGCTCTTCCGATCTCGAAATGCTGGTATTGTTGGTGT
ncov_cap_118_LEFTACGTGTGCTCTTCCGATCTTGACTTCACGGAAGAGAGGTTAAAAC
ncov_cap_120_LEFTACGTGTGCTCTTCCGATCTCCACTTCAGAGAGCTAGGTGTTG
ncov_cap_122_LEFTACGTGTGCTCTTCCGATCTCACTTCTTCTTTGCTCAGGATGGT
ncov_cap_124_LEFTACGTGTGCTCTTCCGATCTCGCATATACAAAACGTAATGTCATCCC
ncov_cap_126_LEFTACGTGTGCTCTTCCGATCTATGGGTTGGGATTATCCTAAATGTGA
ncov_cap_128_LEFTACGTGTGCTCTTCCGATCTTCAGGAGATGCCACAACTGCTT
ncov_cap_130_LEFTACGTGTGCTCTTCCGATCTTACTCTCTGACGATGCTGTTGTG
ncov_cap_132_LEFTACGTGTGCTCTTCCGATCTAGATCCATCAAGAATCCTAGGGGC
ncov_cap_134_LEFTACGTGTGCTCTTCCGATCTGGAACCTGAGTTTTATGAGGCTATGT
ncov_cap_136_LEFTACGTGTGCTCTTCCGATCTACTCAACTTTACTTAGGAGGTATGAGCT
ncov_cap_138_LEFTACGTGTGCTCTTCCGATCTACGCTCAAAGCTACTGAGGAGA
ncov_cap_140_LEFTACGTGTGCTCTTCCGATCTACCGAGGTACAACAACTTACAAATTAAAT
ncov_cap_142_LEFTACGTGTGCTCTTCCGATCTCTCTACTACCCTTCTGCTCGCA
ncov_cap_144_LEFTACGTGTGCTCTTCCGATCTCTTTGATGAAATTTCAATGGCCACAAA
ncov_cap_146_LEFTACGTGTGCTCTTCCGATCTGCACATAAAGACAAATCAGCTCAATGC
ncov_cap_148_LEFTACGTGTGCTCTTCCGATCTGTTGATTCATCACAGGGCTCAGA
ncov_cap_150_LEFTACGTGTGCTCTTCCGATCTTGGGTTACATCCTACACAGGCA
ncov_cap_152_LEFTACGTGTGCTCTTCCGATCTGTCGAGGGGTGTCATGCTACTA
ncov_cap_154_LEFTACGTGTGCTCTTCCGATCTAGTGACACACTTAAAAATCTCTCTGACA
ncov_cap_156_LEFTACGTGTGCTCTTCCGATCTCAGGTAACCTACAAAGCAACCATGA
ncov_cap_158_LEFTACGTGTGCTCTTCCGATCTCCCAGTTCTTCACGACATTGGT
ncov_cap_160_LEFTACGTGTGCTCTTCCGATCTAACTTGCCTGGTTGTGATGGTG
ncov_cap_162_LEFTACGTGTGCTCTTCCGATCTTGTAGACATCATGCTAATGAGTACAGAT
ncov_cap_164_LEFTACGTGTGCTCTTCCGATCTCACAAAAGTTGATGGTGTTGATGTAGA
ncov_cap_166_LEFTACGTGTGCTCTTCCGATCTACTGAAACGATTTGTGCACCACT
ncov_cap_168_LEFTACGTGTGCTCTTCCGATCTCCAACAATTACCTGAAACTTACTTTACTCA
ncov_cap_170_LEFTACGTGTGCTCTTCCGATCTGGTTCATCTAAGTGTGTGTGTTCTGT
ncov_cap_172_LEFTACGTGTGCTCTTCCGATCTAGAATGCTATTAGAAAAGTGTGACCTTCA
ncov_cap_174_LEFTACGTGTGCTCTTCCGATCTTGATGCAGATTCAACTTTGATTGGTG
ncov_cap_176_LEFTACGTGTGCTCTTCCGATCTGCTGATCTTTATAAGCTCATGGGACA
ncov_cap_178_LEFTACGTGTGCTCTTCCGATCTAGGGGTACTGCTGTTATGTCTTTAAA
ncov_cap_180_LEFTACGTGTGCTCTTCCGATCTAGGACTTGTTCTTACCTTTCTTTTCCA
ncov_cap_182_LEFTACGTGTGCTCTTCCGATCTGTTGGATGGAAAGTGAGTTCAGAGT
ncov_cap_184_LEFTACGTGTGCTCTTCCGATCTTCGGCTTTAGAACCATTGGTAGATT
ncov_cap_186_LEFTACGTGTGCTCTTCCGATCTAGTGTACGTTGAAATCCTTCACTGT
ncov_cap_188_LEFTACGTGTGCTCTTCCGATCTACTTTTAAGTGTTATGGAGTGTCTCCT
ncov_cap_190_LEFTACGTGTGCTCTTCCGATCTAGATTGTTTAGGAAGTCTAATCTCAAACCT
ncov_cap_192_LEFTACGTGTGCTCTTCCGATCTATGGTTTAACAGGCACAGGTGT
ncov_cap_194_LEFTACGTGTGCTCTTCCGATCTATCAACTTACTCCTACTTGGCGTG
ncov_cap_196_LEFTACGTGTGCTCTTCCGATCTAACTCTATTGCCATACCCACAAATTTT
ncov_cap_198_LEFTACGTGTGCTCTTCCGATCTAGTCAAACAAATTTACAAAACACCACCA
ncov_cap_200_LEFTACGTGTGCTCTTCCGATCTTTGCCACCTTTGCTCACAGATG
ncov_cap_202_LEFTACGTGTGCTCTTCCGATCTGCACTTGGAAAACTTCAAGATGTGG
ncov_cap_204_LEFTACGTGTGCTCTTCCGATCTTGCTGCTACTAAAATGTCAGAGTGT
ncov_cap_206_LEFTACGTGTGCTCTTCCGATCTTGTAACACAAAGGAATTTTTATGAACCACA
ncov_cap_208_LEFTACGTGTGCTCTTCCGATCTGTAAACATTCAAAAAGAAATTGACCGCC
ncov_cap_210_LEFTACGTGTGCTCTTCCGATCTGCTCAAAGGAGTCAAATTACATTACACA
ncov_cap_212_LEFTACGTGTGCTCTTCCGATCTCCAAGGGTGTTCACTTTGTTTGC
ncov_cap_214_LEFTACGTGTGCTCTTCCGATCTGCCAACTATTTTCTTTGCTGGCA
ncov_cap_216_LEFTACGTGTGCTCTTCCGATCTTTCACACAATCGACGGTTCATCC
ncov_cap_218_LEFTACGTGTGCTCTTCCGATCTCCTTACTGCGCTTCGATTGTGT
ncov_cap_220_LEFTACGTGTGCTCTTCCGATCTAAGCTCCTTGAACAATGGAACCT
ncov_cap_222_LEFTACGTGTGCTCTTCCGATCTTTCTTTCAGACTGTTTGCGCGT
ncov_cap_224_LEFTACGTGTGCTCTTCCGATCTAACGCTTTCTTATTACAAATTGGGAGC
ncov_cap_226_LEFTACGTGTGCTCTTCCGATCTTCTCAATTAGATGAAGAGCAACCAATGG
ncov_cap_228_LEFTACGTGTGCTCTTCCGATCTCGTCTATCAGTTACGTGCCAGAT
ncov_cap_230_LEFTACGTGTGCTCTTCCGATCTATTATCTTTTGGTTCTCACTTGAACTGC
ncov_cap_232_LEFTACGTGTGCTCTTCCGATCTACATCGATATCGGTAATTATACAGTTTCCT
ncov_cap_234_LEFTACGTGTGCTCTTCCGATCTACCCTCAGATTCAACTGGCAGT
ncov_cap_236_LEFTACGTGTGCTCTTCCGATCTAATGAAAGATCTCAGTCCAAGATGGT
ncov_cap_238_LEFTACGTGTGCTCTTCCGATCTGCAGTCAAGCCTCTTCTCGTTC
ncov_cap_240_LEFTACGTGTGCTCTTCCGATCTGCAAAAACGTACTGCCACTAAAGC
ncov_cap_242_LEFTACGTGTGCTCTTCCGATCTACACAGGTGCCATCAAATTGGA
ncov_cap_244_LEFTACGTGTGCTCTTCCGATCTTGCTGACTCAACTCAGGCCTAA
RNAse_P_LEFTACGTGTGCTCTTCCGATCTGATTTGGACCTGCGAGCG

Preparation of barcoded beads for RNA capture
Preparation of barcoded beads for RNA capture

Note
The first stage in our workflow is the preparation of bead-bound DNA probes that will facilitate subsequent viral RNA capture, cDNA synthesis and multiplex PCR to generate ~200 nt amplicons covering the entire SARS-CoV-2 genome. We use two distinct sets of probes for this, requiring two independent bead preparations for each sample to be processed. Ultimately, this enables library preparation to be performed in two parallel reactions, designed such that neighbouring amplicons do not overlap within the same library PCR. This strategy protects against preferential amplification of short overlap products, and has been successfully developed and employed elsewhere (Quick et al. [2017] Nat Protoc. 12: 1261; https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w/abstract). Throughout the protocol we use the generic terms “pool 1” and “pool 2” to refer to our two capture probe sets, as well as the corresponding primer sets needed for library amplification. 

We envisage that capture beads could be prepared in bulk in advance and supplied to testing labs in 96-well or 384-well format. Each uniquely barcoded bead preparation could thus be used for multiple sample batches, provided each batch is sequenced independently. The protocol below is for a small-scale preparation of up to 10 uniquely barcoded bead sets, to be used in development and evaluation of a prototype. We also provide an alternative, lower-cost bead preparation method at the end of this page. 

Wash Amount200 µL of streptavidin-coated Dynabeads™ MyOne™ C1 magnetic beads as per the manufacturer’s instructions:
Resuspend the Dynabeads™ magnetic beads in the vial (vortex for >Duration00:00:30 ).
Transfer Amount200 µL of Dynabeads™ magnetic beads to a tube.
Add an equal volume of 1X B&W buffer and resuspend.
Place the tube on a magnet for Duration00:01:00 and discard the supernatant.
Remove the tube from the magnet and resuspend the washed magnetic beads in Amount200 µL of 1X B&W buffer.
Repeat steps 1.4–1.5 twice, for a total of 3 washes.
Pellet beads once more, and resuspend in Amount400 µL of 2X B&W buffer.
For each unique barcode, take an aliquot of the prepared beads and immobilise an oligonucleotide of the structure 5'-[ biotin ][ spacer ][ partial Illumina p5 adapter ][ sample barcode ][ generic stub ]-3’ onto the beads as follows:
Add Amount40 µL of 5 μM oligonucleotide ([Biotin]-barcoded bead tether) to Amount40 µL of washed beads.
Incubate for Duration00:15:00 at room temperature using gentle rotation.
Separate the biotinylated DNA coated beads with a magnet for 2–3 min.
Wash the coated beads 2–3 times with Amount100 µL 1X B&W buffer.
Resuspend in Amount120 µL of nuclease-free water.
For each barcoded sample, generate two distinct libraries of bead-bound SARS-CoV-2 probes by annealing separate oligonucleotide pools with the general structure 3'-[ generic stub complement ][ SARS-CoV-2 target ]-5’ and performing strand extension:
Mix the following components in 0.2 mL PCR tubes:
Component Pool 1 Pool 2

Bead-bound template (previous step) Amount60 µL Amount60 µL

5X PrimeSTAR GXL buffer Amount20 µL Amount20 µL

dNTP mixture (2.5 mM each) Amount8 µL Amount8 µL

SARS-CoV-2 probe pool 1 or 2 (10 μM) Amount10 µL Amount10 µL

PrimeSTAR GXL DNA polymerase Amount2 µL Amount2 µL

Incubate the reaction as follows:

Step Temperature Time Cycles
Denaturation Temperature98 °C Duration00:00:10 1
Annealing Temperature55 °C Duration00:00:15 1
Extension Temperature68 °C Duration00:02:00 1
Hold Temperature4 °C Indefinite 1
For each bead sample, dissociate and remove the non-biotinylated strand as follows:
Pellet the beads on a magnet and wash once in Amount50 µL 1X SSC.
Resuspend the beads in Amount20 µL of freshly prepared 0.15 M NaOH and incubate at room temperature for Duration00:10:00 .
Pellet the beads on a magnet and discard the supernatant containing the non-biotinylated strand.
Wash the beads once with Amount50 µL 0.1M NaOH, once with Amount50 µL of 1X B&W buffer and once with Amount50 µL TE buffer.
Resuspend beads in Amount50 µL TE buffer.

Note
The above steps are designed to produce two libraries of single-stranded, bead-bound SARS-CoV-2 probes for each sample barcode, with the general structure 5'-[ biotin ][ spacer ][ partial Illumina p5 adapter ][ sample barcode ][ generic stub ][ SARS-CoV-2 target ]-3’. Once the method has been suitably tested and is ready for deployment at scale, we envisage that these steps could be simplified substantially by synthesising the biotinylated probe sets in full for each sample barcode and immobilising these directly onto the streptavidin-coated beads.

Sample collection and preparation
Sample collection and preparation
Collect nasopharyngeal swabs in a Amount1.5 mL volume of transport medium.

Note
We are currently testing a range of media with the aim of identifying a formulation that optimally preserves viral RNA and supports hybridisation with our bead-bound probes in the following step. These include UTM, Lysis/binding buffer and a combination of the two (see Materials). Alternatively, kit-extracted RNA or synthetic control RNA can be used.

Quantify Amount10 µL of swab diluent using the Qubit RNA HS assay or similar.

RNA capture
RNA capture
For each sample to be tested, transfer 2 x Amount25 µL of unique barcoded beads (one for each probe set) into separate 0.2 mL PCR tubes.

Note
Alternatively, use multi-well PCR plates. For 384-well plates, sample volumes will need to be scaled down in subsequent steps.

Pellet the beads on a magnet and discard the supernatant.
Add Amount50 µL of swab diluent directly to each bead pellet (i.e. 2 x Amount50 µL per swab sample)  and resuspend completely by pipette mixing. Alternatively, use purified or synthetic control RNA in a buffer suitable for probe hybridisation e.g. 1X SSC.

Place reactions in a preheated thermal cycler with a heated lid and incubate at Temperature75 °C for Duration00:02:00 , then ramp to Temperature25 °C at a rate of -0.1℃/s and proceed immediately to the next step.
Pellet the beads on a magnet and discard the supernatant.
Resuspend each reaction in Amount20 µL of Washing buffer A.
Combine all “pool 1” samples together into a fresh tube and repeat this process for “pool 2”.

Note
For large sample batches it should only be necessary to pool a small aliquot of each reaction. The combined samples will be used as input for cDNA synthesis. We are currently testing whether there is a limit to the amount of beads that can be tolerated in the reverse transcription reaction, as well as the subsequent library amplification.

cDNA synthesis
cDNA synthesis
Wash each pooled bead sample once with an equivalent volume of Washing buffer A and twice with the same volume of Washing buffer B, using a magnet to separate the beads from the solution between each washing step. After the final wash, leave the beads suspended in Washing buffer B at room temperature and proceed immediately to the next step.
Prepare a reverse transcriptase master mix by combining the following components from the SuperScript™ IV First-Strand Synthesis System:

Component Volume

5X SSIV buffer                                         Amount20 µL

10 mM dNTP mix (10 mM each)            Amount5 µL

100 mM DTT                                         Amount5 µL

Ribonuclease inhibitor (40 U/μL)               Amount5 µL

DEPC-treated water                           Amount60 µL
Pellet beads from step 14 on a magnet and discard the supernatant. Pulse spin tubes for 5 s, return to the magnet and discard any remaining liquid to ensure all the Washing buffer B has been removed (residual buffer may inhibit the reverse transcriptase reaction).
Perform one final wash in Amount25 µL of reverse transcriptase master mix. Again pellet beads on a magnet and discard the supernatant.

Resuspend each pooled bead sample in Amount19 µL of reverse transcriptase master mix and add Amount1 µL of SuperScript™ IV Reverse Transcriptase (200 U/μL). Mix well by pipetting and briefly centrifuge.
Incubate the reactions at Temperature55 °C for Duration00:10:00 .
Inactivate by incubating at Temperature80 °C for Duration00:10:00 .
Pellet beads by placing each tube on a magnet. Discard the supernatant and wash once in TE buffer.
Library amplification
Library amplification

Note
Here we generate amplicon libraries from each pooled cDNA sample by multiplex PCR. We also incorporate Illumina sequencing adapters and additional barcodes at this stage, producing sequence-ready samples that could potentially be combined with additional library pools for further scalability. Sequencing adapters are added over two sequential rounds of PCR, although we envisage that a single step protocol may also be feasible.

Pellet the “pool 1” and “pool 2” cDNA-coated bead samples from the previous step on a magnet, discard the supernatant and resuspend each in Amount28 µL of nuclease-free water.

Combine the first-round PCR components in separate 0.2 mL PCR tubes:

Component                                     Pool 1   Pool 2
cDNA-coated beads (pool 1 or 2)          Amount26.7 µL         Amount26.7 µL
5X Q5 reaction buffer                               Amount10 µL         Amount10 µL
10 mM dNTPs                                            Amount1 µL           Amount1 µL
Illumina P5 index primer (10 μM)               Amount2.5 µL         Amount2.5 µL
SARS-CoV-2 primer pool 1 or 2 (10 μM)   Amount9.3 µL       Amount9.3 µL
Q5 Hot Start High-Fidelity Polymerase      Amount0.5 µL      Amount0.5 µL

Note
The SARS-CoV-2 primer pools contain 124 (pool 1) and 123 (pool 2) individual primer sequences. The concentration of each primer in the final reaction is 0.015 μM, as recommended in previous studies (Quick et al. [2017] Nat Protoc. 12: 1261).

Mix well by pipetting and briefly centrifuge.
Incubate the first-round PCR reactions as follows:

Step Temperature       Time       Cycles

Heat activation        Temperature98 °C Duration00:00:30 1

Denaturation           Temperature98 °C Duration00:00:15 25-35

Annealing/extension Temperature65 °C Duration00:05:00           25-35

Hold             Temperature4 °C   Indefinite      1
For each reaction, pellet the cDNA-coated beads on a magnet and transfer the supernatant containing the amplified product to a new tube.
Clean up each reaction by performing a left side size selection with a 1.2X volume of SPRIselect beads as per the manufacturer’s instructions (Beckman Coulter). Elute the sample in Amount40 µL of nuclease-free water.
Quantify Amount1 µL of each purified sample using the Qubit dsDNA HS assay or similar.

Combine the second-round PCR components in separate 0.2 mL PCR tubes:

Component                                     Pool 1   Pool 2
Purified template (previous step)              Amount10 ng           Amount10 ng
5X PrimeSTAR GXL buffer                        Amount10 µL         Amount10 µL
dNTP mixture (2.5 mM each)                   Amount4 µL               Amount4 µL
Illumina P5 flow cell primer (10 μM)           Amount1.25 µL         Amount1.25 µL
Illumina P7 index primer (10 μM)               Amount1.25 µL         Amount1.25 µL
PrimeSTAR GXL DNA polymerase          Amount1 µL             Amount1 µL
Nuclease-free water                                   to Amount50 µL         to Amount50 µL      
Mix well by pipetting and briefly centrifuge.
Incubate the second-round PCR reactions as follows:

Step Temperature       Time         Cycles

Denaturation            Temperature98 °C                 Duration00:00:10         6
Annealing                 Temperature60 °C       Duration00:00:15       6
Extension                 Temperature68 °C                 Duration00:01:00       6
Hold                       Temperature4 °C              Indefinite      1
Clean up each reaction by performing a left side size selection with a 0.8X volume of SPRIselect beads as per the manufacturer’s instructions (Beckman Coulter). Elute the sample in Amount40 µL of nuclease-free water.
Library quantitation and sequencing
Library quantitation and sequencing
Determine the concentration of the final “pool 1” and “pool 2” multiplexed libraries in ng/μL using the Qubit dsDNA HS assay or similar.
Assess the fragment size distribution of each library and determine the average fragment length using an Agilent 2100 Bioanalyzer or similar.
Calculate sample molarity using the following formula:

Concentration in nM = [(concentration in ng/μL) / (660 g/mol x average size in bp)] x 106
Combine an equimolar amount of each library and mix.

Note
If sequencing additional samples, quantitate them as above and combine at the desired relative molarity.

Sequence the final pooled library using an Illumina instrument, generating 2 x 150 nt paired end reads
Alternative bead preparation method
Alternative bead preparation method

Note
This alternative method enables the production of multiple uniquely barcoded bead preparations from a single biotinylated template oligo. This reduces oligo synthesis costs, but does introduce an additional level of protocol complexity.

Wash Amount200 µL of streptavidin-coated Dynabeads™ MyOne™ C1 magnetic beads as per the manufacturer’s instructions:
Resuspend the Dynabeads™ magnetic beads in the vial (vortex for >Duration00:00:30 ).
Transfer Amount200 µL of Dynabeads™ magnetic beads to a tube.
Add an equal volume of 1X B&W buffer and resuspend.
Place the tube on a magnet for Duration00:01:00 and discard the supernatant.
Remove the tube from the magnet and resuspend the washed magnetic beads in Amount200 µL of 1X B&W buffer.
Repeat steps 38.4–38.5 twice, for a total of 3 washes.
Pellet beads once more, and resuspend in Amount400 µL of 2X B&W buffer.
Immobilise a generic oligonucleotide of the structure 5'-[ biotin ][ spacer ][ partial Illumina p5 adapter ]-3’ onto the beads as follows:
Add Amount400 µL of 5 μM oligonucleotide ([Biotin]-bead tether) to Amount400 µL of washed beads.
Incubate for Duration00:15:00 at room temperature using gentle rotation.
Separate the biotinylated DNA coated beads with a magnet for 2–3 min.
Wash the coated beads 2–3 times with 1X B&W buffer.
Resuspend in Amount1.200 mL of nuclease-free water.
For each unique barcode, generate two libraries of bead-bound SARS-CoV-2 probes via a two-stage annealing and extension process using a barcoded linker oligonucleotide of the structure 3'-[ partial Illumina p5 adapter complement ][ sample barcode ][ generic stub complement ]-5’ and two separate oligonucleotide pools with the general structure 3'-[ generic stub complement ][ SARS-CoV-2 target ]-5’:
Mix the following components in a 0.2 mL PCR tube:
Component Pool 1 Pool 2
Bead-bound template (previous step) Amount60 µL Amount60 µL

5X PrimeSTAR GXL buffer Amount20 µL Amount20 µL

dNTP mixture (2.5 mM each) Amount8 µL Amount8 µL

Barcoded linker (10 μM) Amount5 µL Amount5 µL

SARS-CoV-2 probe pool 1 or 2 (10 μM) Amount5 µL Amount5 µL

PrimeSTAR GXL DNA polymerase Amount2 µL Amount2 µL

Incubate the reaction as follows:

Step Temperature Time Cycles
Denaturation Temperature98 °C Duration00:00:10 4
Annealing Temperature55 °C Duration00:00:15 4
Extension Temperature68 °C Duration00:02:00 4
Hold Temperature4 °C Indefinite 4
For each bead sample, dissociate and remove the non-biotinylated strand as follows:
Pellet the beads on a magnet and wash once in Amount50 µL 1X SSC.
Resuspend the beads in Amount20 µL of freshly prepared 0.15 M NaOH and incubate at room temperature for Duration00:10:00 .
Pellet the beads on a magnet and discard the supernatant containing the non-biotinylated strand.
Wash the beads once with Amount50 µL 0.1M NaOH, once with Amount50 µL of 1X B&W buffer and once with Amount50 µL TE buffer.
Resuspend beads in Amount50 µL TE buffer.