

Apr 26, 2024

Version 2

A protocol for computerized quantitative analysis of nerve fibers, mast cells, enteric glial cells and the proximity of mast cells to the nerve fibers in 3D Images of human sigmoid mucosal biopsies V.2

DOI

dx.doi.org/10.17504/protocols.io.rm7vzj3qrlx1/v2

Tao Li¹, Pu-Qing Yuan¹, Yvette Taché¹

¹University of California at Los Angeles (UCLA)

Pu-Qing Yuan: Corresponding author

SPARC

A single cell RNA seque...

Pu-Qing Yuan

University of California at Los Angeles (UCLA)

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.rm7vzj3qrlx1/v2

Protocol Citation: Tao Li, Pu-Qing Yuan, Yvette Taché 2024. A protocol for computerized quantitative analysis of nerve fibers, mast cells, enteric glial cells and the proximity of mast cells to the nerve fibers in 3D Images of human sigmoid mucosal biopsies. protocols.io https://dx.doi.org/10.17504/protocols.io.rm7vzj3qrlx1/v2 Version created by Pu-Qing Yuan

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: April 26, 2024

Last Modified: April 26, 2024

Protocol Integer ID: 98876

Keywords: 3D images, quantitative analysis, nerve fibers, mast cells, human sigmoid biopsy, Imaris, nerve fibers in 3d image, immune cells in 3d image, quantitative analysis of nerve fiber, proximity of mast cell, human sigmoid mucosal biopsies this protocol, human sigmoid mucosal biopsy, masked nerve fiber, spotted mast cell, 3d image, nerve fiber, mast cell, 2d image, limitations of 2d image, enteric glial cell, individual spot to the surface, surfaces rendering technology, underlying peripheral mechanism, cell, surface, computerized quantitative analysis, peripheral mechanisms of visceral pain, protocol for computerized quantitative analysis

Funders Acknowledgements:

NIH/SPARC

Grant ID: 10T20D024899-01

Abstract

This protocol describes a step-by-step computational workflow that we developed by adapting Imaris 9.7-9.9 Surfaces Rendering Technology (https://imaris.oxinst.com/products/imaris-for-neuroscientists) to perform the quantitative analysis of nerve fibers, enteric glial and immune cells in 3D images of human sigmoid mucosal biopsies, as well as to assess the proximity of mast cells to the nerve fibers which cannot be easily portrayed and precisely measured with 2D images. The volumes of surface-masked nerve fibers and enteric glial cells, the numbers of spotted mast cells and the shortest distances of the centers of each individual spot to the surfaces of nerve fibers in 3D images were automatically computed and plotted correspondently with Imaris 9.7-9.9. This computerized protocol not only reduces the biases due to observer/examiner judgment and overcomes limitations of 2D images, but also much faster than measuring manually and allows us to quantitate a larger number of samples, increasing statistical accuracy. The created parameters also provide efficient reference for us to apply the New Al Machine Learning Segmentation implemented into Imaris 10.1 recently for our quantitative analysis of large datasets. This protocol has been using in out study relevant to the underlying peripheral mechanisms of visceral pain in irritable bowel syndrome.

Attachments

protocol.docx

626KB

Troubleshooting

1

2