Western Blotting Protocol V.1

BioLegend, Inc.

Version 1

May 31, 2016

BioLegend

Tech. support email: tech@biolegend.com

Sam Li
BioLegend

EXTERNAL LINK

DOI

dx.doi.org/10.17504/protocols.io.e2abgae

EXTERNAL LINK

PROTOCOL CITATION

BioLegend, Inc. 2016. Western Blotting Protocol. protocols.io

https://dx.doi.org/10.17504/protocols.io.e2abgae

COLLECTIONS

Western Blotting Protocols (Collection)

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

May 31, 2016

LAST MODIFIED

Aug 29, 2019

OWNERSHIP HISTORY

May 31, 2016 Kelsey Knight BioLegend

Aug 29, 2019 Sam Li BioLegend

PROTOCOL INTEGER ID

2850

PARENT PROTOCOLS

Part of collection

Western Blotting Protocols (Collection)

GUIDELINES

Tips:

Citation: BioLegend, Inc. (05/31/2016). Western Blotting Protocol. https://dx.doi.org/10.17504/protocols.io.e2abgae

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
High background
1. Transfer buffers may have become contaminated. Contamination can be transferred to the blots from electrophoresis and related equipment used in blot preparation.
2. Post-antibody washes may not have been performed for a sufficient period of time or were not performed in a high enough volume.
3. The blocking and incubation agents used were not freshly prepared or were too dilute.

No signal or poor signal
1. Transfer efficiency may have been poor. Check protein transfer by staining the gel and/or membrane.
2. Incorrect storage of antibodies or ECL western blotting detection reagents may result in a loss of signal.
3. Insufficient protein may have been loaded on the gel. Depending on the location of the target protein, membrane or nuclear preparations may be required (instead of whole cell lysates).
4. Film exposure time may have been too short.

Solutions and Reagents:

1X Cell Lysis Buffer:
20 mM Tris-HCl, pH 7.5
150 mM NaCl
1% NP-40
2 mM EDTA
1 µg/ml leupeptin
1 µg/ml aprotinin
1 mM Na$_3$PO$_4$
1 mM PMSF
5 mM NaF
3 mM Na$_4$P$_2$O$_4$

5X SDS Sample Buffer:
312.5 mM Tris-HCl (pH 6.8)
10% SDS (w/v)
250 mM DTT
50% Glycerol
0.05% Bromophenol Blue (w/v)
Use at 1X

10X SDS Running Buffer
Dissolve 144 g of Glycine, 30 g of Tris base and 10 g SDS in 800 ml of distilled H$_2$O.
Add distilled H$_2$O to 1 liter
Use at 1X

Transfer Buffer:
3.0 g Tris base
14.4 g Glycine
200 ml Methanol
Add deionized water to 1.0 L

10X TBS-T (Tris-buffered saline containing Tween-20):
Dissolve 80 g of NaCl, 2 g of KCl, 30 g of Tris base and 10 ml Tween-20 in 800 ml of distilled H$_2$O.
Adjust the pH to 7.4 with HCl. Add distilled H$_2$O to 1 liter.
Use at 1X (containing 0.1% Tween-20).

Blocking Buffer:
1X TBS-T with 5% nonfat dry milk

Wash Buffer:
1X TBS-T
Primary and Secondary Antibody Dilution Buffer:
1X TBS-T with 5% nonfat dry milk

If phosphorylation-specific antibodies are used, the membrane blocking buffer and antibody dilution buffer should not contain milk.

Alternate Blocking Buffer:
1X TBS-T with 4% Bovine Serum Albumin (BSA)

Alternate Primary and Secondary Antibody Dilution Buffer:
1X TBS-T with 4% Bovine Serum Albumin (BSA)

Blotting Membrane:
Nitrocellulose or PVDF membrane

Sample preparation

1. Place cells in a microcentrifuge tube and centrifuge to collect the cell pellet.

2. Lyse the cell pellet with 100 µl of lysis buffer on ice for 30 min (For 1 X 10^6 cells, lyse with 100 µl of lysis buffer).

 \[00:30:00\]

3. Centrifuge at 14,000 rpm (16,000 x g) for 10 minutes at 4°C.

 \[00:10:00\]

4. Transfer the supernatant to a new tube and discard the pellet.

5. Remove 20 µl of supernatant and mix with 20 µl of 2x sample buffer.

6. Boil for 5 min.

 \[00:05:00\]

7. Cool at room temperature for 5 minutes.

 \[00:05:00\]

8. Microcentrifuge for 5 minutes.

 \[00:05:00\]

9. Load up to 40 µl of sample to each well of a 1.5 mm thick gel.

Guidelines for choosing gel percentages are based on protein size to be detected: 4-5% gel, >200 kD; 7.5% gel, 120-200 kD; 8-10% gel, 40-120 kD; 13% gel, 15-40 kD; 15% gel, < 20 kD
Set gel running conditions according to the manufacturer’s instructions.

Transfer the proteins to nitrocellulose or PVDF membrane with variable power settings according to the manufacturer’s instructions.

For Amyloid Beta Detection, Boiling Method: Immediately after transferring the gel onto the membrane, submerge the membrane in boiling PBS for 5 minutes. After boiling, continue as normal to the membrane blocking step of the protocol. (See the Western Blot Analysis for Beta Amyloid Products protocol.)

Membrane Blocking

12 Remove the blotted membrane from the transfer apparatus and immediately place in blocking buffer consisting of 5% nonfat dry milk/TBS-T.

If phosphorylation-specific antibodies are used, the membrane blocking buffer and antibody dilution buffer should not contain milk.

13 Incubate the blot for 1 hour at room temperature, or overnight at 4°C with agitation.

Antibody Incubation

14 Dilute the primary antibody to the recommended concentration/dilution in 5% nonfat dry milk/TBS-T** (usually at 1µg/ml).

If phosphorylation-specific antibodies are used, the membrane blocking buffer and antibody dilution buffer should not contain milk.

15 Place the membrane in the primary antibody solution and incubate for 2 hours at room temperature, or overnight at 4°C with agitation.

16 Wash for 5 minutes with Wash Buffer (TBS containing 0.1% Tween-20). [wash 1/3]

17 Wash for 5 minutes with Wash Buffer (TBS containing 0.1% Tween-20). [wash 2/3]

18 Wash for 5 minutes with Wash Buffer (TBS containing 0.1% Tween-20). [wash 3/3]

19 Incubate the membrane for 30 minutes at room temperature with horseradish peroxidase (HRP)-conjugated secondary antibody, diluted to 1:1000 in 5% nonfat dry milk/TBS-T.
If phosphorylation-specific antibodies are used, the membrane blocking buffer and antibody dilution buffer should not contain milk.

20. Wash for 10 minutes with TBS containing 0.1% Tween-20. (1/4)

21. Wash for 10 minutes with TBS containing 0.1% Tween-20. (2/4)

22. Wash for 10 minutes with TBS containing 0.1% Tween-20. (3/4)

23. Wash for 10 minutes with TBS containing 0.1% Tween-20. (4/4)

24. Wash once for 2 minutes with PBS.

Protein Detection

25. Incubate membrane (protein side up) with 10 ml of ECL (enhanced chemiluminescence substrate) for 1-2 minutes. The final volume required is 0.125 ml/cm².

26. Drain off the excess detection reagent, wrap up the blots, and gently smooth out any air bubbles.

27. Place the wrapped blots, protein side up, in an X-ray film cassette and expose to x-ray film. Exposures can vary from 5 seconds to 60 minutes.