

Feb 08, 2016

③ Obtaining pure cyanophage stocks (liquid assay)

In 1 collection

DOI

dx.doi.org/10.17504/protocols.io.dqm5u5

Mathias Middelboe¹, Amy M. Chan¹, and Sif K. Bertelsen¹

¹Manual of Aquatic Viral Ecology

VERVE Net

Suttle Laboratory of Mar...

Amy Chan

OPEN ACCESS

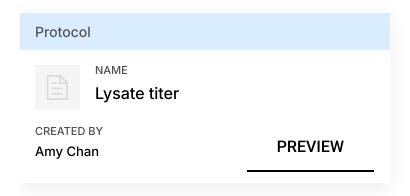
DOI: dx.doi.org/10.17504/protocols.io.dqm5u5

External link: http://www.aslo.org/books/mave/MAVE_118.pdf

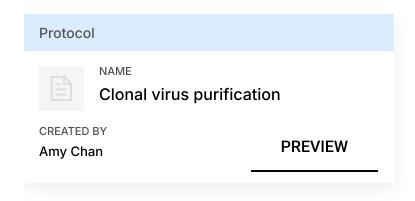
Protocol Citation: Mathias Middelboe, Amy M. Chan, and Sif K. Bertelsen 2016. Obtaining pure cyanophage stocks (liquid assay). **protocols.io** <u>https://dx.doi.org/10.17504/protocols.io.dqm5u5</u>

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working


Created: September 02, 2015

Last Modified: March 28, 2018


Protocol Integer ID: 1517

1 Determine the titer of the lysate using the 96-well assay as described earlier.

- 1.1 Prepare end-point dilution series (10-fold serial dilutions, 5 to 6 levels).
- 1.2 Monitor plates for lysis every few days, recording the number and position of clear wells on the plate.
- 1.3 When clear or nearly clear wells no longer appear for 1 week, record the final "score" for each dilution level.
- 1.4 Use the MPN Assay Analyser program (Passmore et al. 2000) to determine the most-probable-number (Taylor 1962) of infective phages in the lysate.
- Once the cyanophage titer is determined for the stock tube, proceed to purify a clonal virus.

2.1 Use 13-×-100-mm culture tubes (or 24-well plates).

- 2.2 Prepare exponentially growing target cells (e.g., >100 mL).
- 2.3 Dilute some of the titered lysate to 1 infective virus/mL.
- 2.4 Add 0.2 mL (0.2 infectious units) to each of 20 tubes of susceptible host cells.
- 2.5 Monitor tubes for 2 to 3 weeks.
- 2.6 Cultures in which lysis occurs are assumed to be the result of a single-virus infection.

Note

The probability that more than 1 infective unit occurred in a given culture is 0.0176.

- 2.7 If lysis occurs in 4 tubes or less of 20, it is assumed that lysis in each tube was caused by one infectious unit, therefore each tube would contain a separate phage clone.
- 2.8 Propagate an aliquot from all the tubes to confirm the results.
- 2.9 If lysis occurs in more than 4 tubes, repeat the clone out procedure by reducing the volume of diluted lysate added to the 20 tubes.

Note

Add 0.1 mL instead of 0.2 mL.

2.10 Scale up each phage clone to make primary phage stocks.

Note

e.g., add 5µL of the lysate to 40 mL of cells.

2.11 Centrifuge, filter, and titer the stock, store at 4°C in the dark.