

Jan 18, 2016

Generation of DNA fragments by DNase digestion

DOI

dx.doi.org/10.17504/protocols.io.dy47yv

William H. Wilson and Declan Schroeder¹

¹Manual of Aquatic Viral Ecology

VERVE Net

Declan Schroeder

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.dy47yv

External link: http://www.aslo.org/books/mave/MAVE_134.pdf

Protocol Citation: William H. Wilson and Declan Schroeder 2016. Generation of DNA fragments by DNase digestion. **protocols.io** https://dx.doi.org/10.17504/protocols.io.dy47yv

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: October 12, 2015

Last Modified: November 09, 2017

Protocol Integer ID: 1788

Keywords: dnase digestion generation of dna fragment, dnase digestion generation, generation of dna fragment, digesting dna, dnase digestion, sized dna fragment, dna fragment, dna, generation

Abstract

Generation of DNA fragments by DNase digestion involves digesting DNA for a range of times, then picking the time that gives optimal-sized DNA fragments (typically 1000–4000 bp).

Troubleshooting

- In a 50 μ L reaction volume, resuspend 8 μ g DNA in 50 mM Tris·HCI (pH 7.6), 10 mM MnCl₂, 100 μ g mL⁻¹ bovine serum albumin, and 0.01 SU mL⁻¹ DNase I.
- Remove 5 μ L aliquots (adding to 45 μ L TE buffer, pH 7.6) 0, 0.5, 1, 2, 5, 10, 15, and 30 min after addition of the digestion mixture.
- 3 Immediately transfer to a tube containing 25 μL Tris-buffered (pH 7.0) phenol.

Note

Typically the shorter incubations, up to 2 min, give optimally sized fragments.

- 4 Perform a phenol:chloroform (1:1) extraction.
- 5 Perform a chloroform extraction.
- 6 Perform a chloroform extraction once more.
- 7 Precipitate the fragmented DNA.
- 8 Wash with 70% ethanol.
- 9 Dry.
- 10 Resuspend fragmented DNA in 23 μ L of Blunt-ending Mix (100 μ M dNTPs, 1 × T4 DNA Pol Buffer).
- Heat at 65°C for 30 min to resuspend DNA and inactivate any DNase I that was carried over.

6) 00:30:00

12 Cool to room temperature.

- 13 Add 2.5 U Klenow fragment and 5 U T4 DNA polymerase.
- 14 Incubate the reaction at 37°C for 1 h.

01:00:00

15 The fragmented and blunt-ended virus DNA can be run on a 1% agarose gel prior to excising fragments in the 1000–4000 bp range using a standard gel extraction procedures before downstream cloning.

Note

NB do not excise fragments smaller than 1000 kb, as downstream cloning will preferentially clone the smaller fragments.