Artificial Seawater Based AMP1 Medium

Bonnie Poulos

Matthew Sullivan Lab, University of Arizona, Ohio State University

DOI

dx.doi.org/10.17504/protocols.io.c9mz45

PROTOCOL CITATION

Bonnie Poulos 2016. Artificial Seawater Based AMP1 Medium. protocols.io

https://dx.doi.org/10.17504/protocols.io.c9mz45

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

CREATED

Jul 01, 2015

LAST MODIFIED

Mar 17, 2018

PROTOCOL INTEGER ID

1037

GUIDELINES

Turk's Island Salt Mix

<table>
<thead>
<tr>
<th>Chemical</th>
<th>g/2 L</th>
<th>Final Conc.</th>
<th>Mfc.-PN</th>
<th>Chemical Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>56.22</td>
<td>481 mM</td>
<td>Fisher S271</td>
<td>ACS</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>13.8</td>
<td>28 mM</td>
<td>Sigma M2773</td>
<td>Mo.Biol. 99%</td>
</tr>
<tr>
<td>MgCl₂·6H₂O</td>
<td>10.98</td>
<td>27 mM</td>
<td>AlfaAesar M2773</td>
<td>99.99%</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>2.94</td>
<td>10 mM</td>
<td>Fisher C79</td>
<td>ACS</td>
</tr>
<tr>
<td>KCl</td>
<td>1.34</td>
<td>9 mM</td>
<td>Acros</td>
<td>99+%</td>
</tr>
<tr>
<td>MQ·H₂O</td>
<td>OS to 2000 ml</td>
<td>na in house</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>

Macronutrients
<table>
<thead>
<tr>
<th>Macronutrient</th>
<th>g/100 ml</th>
<th>Final Conc.</th>
<th>Mfc.-PN</th>
<th>Chemical Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 M NaH₂PO₄.H₂O</td>
<td>1.38</td>
<td>50 µM</td>
<td>Mallinckrodt 7892-04</td>
<td>ACS</td>
</tr>
<tr>
<td>0.8 M (NH₄)₂SO₄</td>
<td>10.57</td>
<td>400 µM</td>
<td>VWR-BDH 0216</td>
<td>ACS 99%</td>
</tr>
</tbody>
</table>

Buffers

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Stock</th>
<th>Final Conc.</th>
<th>Mfc.-PN</th>
<th>Chemical Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6 M NaHCO₃</td>
<td>0.504 g/10 ml</td>
<td>6 mM</td>
<td>Sigma S6014</td>
<td>ACS 99.7-100.3%</td>
</tr>
<tr>
<td>1 M HEPES</td>
<td>11.9 g/50 ml</td>
<td>1 mM</td>
<td>Fisher BP310</td>
<td>Mol. Biol.</td>
</tr>
</tbody>
</table>

Trace Metal Mix Working Stock

<table>
<thead>
<tr>
<th>Trace Metal</th>
<th>Primary Stock</th>
<th>Final Conc.</th>
<th>Mfc.-PN</th>
<th>Chemical Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂EDTA·2H₂O</td>
<td>0.2175 g/50 ml</td>
<td>0.1170 µM</td>
<td>Sigma E4884</td>
<td>ACS 99-101%</td>
</tr>
<tr>
<td>FeCl₂·6H₂O</td>
<td>0.16 g/50 ml</td>
<td>0.1180 µM</td>
<td>Sigma 44944</td>
<td>ACS 98-102%</td>
</tr>
<tr>
<td>ZnSO₄·7H₂O</td>
<td>1.15 g/50 ml</td>
<td>0.0008 µM</td>
<td>Sigma 204986</td>
<td>>99.5%</td>
</tr>
<tr>
<td>CoCl₂·6H₂O</td>
<td>0.595 g/50 ml</td>
<td>0.0005 µM</td>
<td>Sigma 60820</td>
<td>>98%</td>
</tr>
<tr>
<td>MnCl₂·4H₂O</td>
<td>8.905 g/50 ml</td>
<td>0.0090 µM</td>
<td>M3634</td>
<td>ReagentPlus >99%</td>
</tr>
<tr>
<td>Na₂MoO₄·2H₂O</td>
<td>0.363 g/50 ml</td>
<td>0.0003 µM</td>
<td>M1651</td>
<td>>99.5%</td>
</tr>
<tr>
<td>Na₂SeO₃</td>
<td>0.865 g/50 ml</td>
<td>0.0010 µM</td>
<td>S5261</td>
<td>BioReagent ~98%</td>
</tr>
<tr>
<td>NiCl₂·6H₂O</td>
<td>1.19 g/50 ml</td>
<td>0.0010 µM</td>
<td>223387</td>
<td>ReagentPlus</td>
</tr>
</tbody>
</table>

Note: Use primary stocks of ZnSO₄, CoCl₂, MnCl₂, Na₂MoO₄, Na₂SeO₃, and NiCl₂ prepared for Pro99 trace metal working stock.
Citation: Bonnie Poulos (01/04/2016). Artificial Seawater Based AMP1 Medium. https://dx.doi.org/10.17504/protocols.io.c9mz45

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
MATERIALS

MATERIALS

- Ethylenediaminetetraacetic acid disodium salt dihydrate Sigma
 - Aldrich Catalog #E4884
- Sodium Chloride Fisher
 - Scientific Catalog #S271
- Magnesium sulfate heptahydrate Sigma
 - Aldrich Catalog #M2773
- Calcium Chloride Dihydrate Fisher
 - Scientific Catalog #C79
- Sodium bicarbonate Sigma
 - Aldrich Catalog #S6014
- HEPES Fisher
 - Scientific Catalog #BP310 | Step 7
- Iron(III) chloride hexahydrate Sigma
 - Aldrich Catalog #44944 | Step 14
- Zinc sulfate heptahydrate Sigma
 - Aldrich Catalog #204986
- Cobalt(II) chloride hexahydrate Sigma
 - Aldrich Catalog #60820
- Manganese(II) chloride tetrahydrate Sigma
 - Aldrich Catalog #M3634
- Sodium molybdate dihydrate Sigma
 - Aldrich Catalog #M1651
- Sodium selenite Sigma
 - Aldrich Catalog #S5261
- Nickel(II) chloride hexahydrate Sigma
 - Aldrich Catalog #223387

STEP MATERIALS

- HEPES Fisher
 - Scientific Catalog #BP310 | Step 7
- Ethylenediaminetetraacetic acid disodium salt dihydrate Sigma
 - Aldrich Catalog #E4884
- Iron(III) chloride hexahydrate Sigma
 - Aldrich Catalog #44944 | Step 14
- HEPES Fisher
 - Scientific Catalog #BP310 | Step 7
- Ethylenediaminetetraacetic acid disodium salt dihydrate Sigma
 - Aldrich Catalog #E4884
- Iron(III) chloride hexahydrate Sigma
 - Aldrich Catalog #44944 | Step 14
1. Dissolve each salt completely before adding the next one. Refer to the table in guidelines for a full list of salts.

2. Dispense into 500 ml acid-washed polycarbonate bottles.

3. Autoclave 30 min. 00:30:00

Macronutrients

4. pH NaH₂PO₄ to 7.5 using 1M NaOH

 About 8 ml for 100 ml volume.

 Prepare each one separately.

5. Filter sterilize each solution using a 0.2 µm syringe filter into new, sterile 50 ml centrifuge tubes or acid washed and sterile polycarbonate bottles.

6. Store at 4°C

 Dispense 250 µl of each per 500 ml bottle of Turk's Island Salt Mix when preparing the final medium.

Buffers

7. pH HEPES to 7.5 using 1M NaOH

 About 9 ml for 50 ml volume.

 Prepare each one separately.

 HEPES Fisher
 Scientific Catalog #BP310

8. Filter sterilize each solution using a 0.2 µm syringe filter into new, sterile 15 or 50 ml centrifuge tubes or acid washed and sterile polycarbonate bottles.

9. Store at 4°C
The NaHCO₃ should be made monthly.

Dispense 5 ml of NaHCO₃ and 0.5 ml HEPES per 500 ml bottle of Turk’s Island Salt Mix when preparing final medium.

Trace Metal Mix Working Stock

11 Weigh out 0.2175 g Na₂EDTA · 2H₂O using dust free paper

|化学物||Sigma Aldrich Catalog # E4884|
|---|---|
|0 g|Ethylenediaminetetraacetic acid disodium salt dihydrate|

12 Transfer to acid washed 50 ml volumetric flask filled with 40 ml MQ-water

13 Dissolve EDTA by inverting flask several times

May have to heat 5 min. at 80°C to dissolve.

14 Weigh out 0.16 g FeCl₃·6H₂O using dust free paper

|化学物||Sigma Aldrich Catalog # 44944|
|---|---|
|0 µl|Iron(III) chloride hexahydrate|

15 Dissolve iron chloride into same volumetric flask by inverting several times

16 Individually add and dissolve 50 µl each of the ZnSO₄, CoCl₂, MnCl₂, Na₂MoO₄, NaSeO₃, and NiCl₂ Primary Trace Metal Stocks

17 Adjust volume to 50 ml mark with MQ-water

18 Filter through a 0.2 µm syringe filter into sterile, acid washed container in laminar flow hood

19 Store sterile stock at 4°C

Dispense 5 µl Stock Trace Metal Mix to 500 ml bottle of Turk’s Island Salt Mix when preparing final medium.