

Mar 11, 2019

③ 18S Metagenomics in a Field Setting

In 1 collection

DOI

dx.doi.org/10.17504/protocols.io.y2ifyce

Stefan Prost^{1,2}, Gideon Erkenswick^{3,4}, Mrinalini Watsa^{3,5,4}, Aaron Pomerantz^{6,7}

¹LOEWE-Center for Translational Biodiversity Genomics, Senckenberg Museum, 60325 Frankfurt, Germany;

²South African National Biodiversity Institute, National Zoological Garden, Pretoria 0184, South Africa;

³University of Missouri - Saint Louis; ⁴Field Projects International; ⁵Washington University in Saint Louis;

⁶University of California, Berkeley, CA, USA, Department of Integrative Biology;

⁷Marine Biological Laboratory, Woods Hole, MA - USA

Mrinalini Watsa

San Diego Zoo Wildlife Alliance

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.y2ifyce

Protocol Citation: Stefan Prost, Gideon Erkenswick, Mrinalini Watsa, Aaron Pomerantz 2019. 18S Metagenomics in a Field Setting. protocols.io https://dx.doi.org/10.17504/protocols.io.y2ifyce

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: March 11, 2019

Last Modified: March 11, 2019

Protocol Integer ID: 21290

Keywords: 18S, metagenomics, microbiome, wildlife, fieldwork, nanopore, minion, dna 18s metagenomic, metagenomic, genomic, genomics in the jungle, field course at the green lab, dna, fpi, lab, green lab, protocol, field, field course

Abstract

This protocol is was used to conduct DNA 18S metagenomics on FPI's Genomics in the Jungle - 2018 field course at the Green Lab, located and Inkaterra Guides Field Station, Madre de Dios, Peru.

Guidelines

This protocol starts from already extracted DNA

Materials

STEP MATERIALS

Protocol materials

X Agencourt Ampure XP Beckman Coulter Catalog #A63880

X Agencourt Ampure XP Beckman Coulter Catalog #A63880

Troubleshooting

Amplification

1 Remove samples and the following reagents and let thaw, once thawed keep on ice block

- 10mM DNTPs
- 25 mMgCl
- 5x Go Taq Buffer
- Forward primer 5′-CAGCAGCCGCGGTAATTCC-3′ (10uM)
- Reverse primer 5'-CCCGTGTTGAGTCAAATTAAGC-3' (10uM)
- GoTaq Hotstart Polymerase 5u/ul

Make PCR cocktail for # of samples * 1.1 (10% extra). Don't forget to include 1 PCR negative control for each separate PCR

Run PCR according to the following cycle conditions:

- Initial denaturation ▮ 95 °C for 120s
- 25 cycles of \$\mathbb{\math
- Final extension **§** 72 °C for **ⓑ** 00:05:00

Upon completion remove, label, and store at $\$ 4 $^{\circ}\text{C}$, or take directly to electrophoresis

2 Equipment

- BlueGel system
- MiniOne system

Create .8 - 1.0% agarose 1 gel with 13 combs

- Measure 1 g of agarose
- Mix agraose with 100 mL of 1xTBE
- Microwave the mixture until agarose is completely dissolved (1-3 min)
- Pour the agarose gel into the tray with the comb in place.
- Allow the agarose gel to harden (20-30 min)

Insert the agarose gel into electrophoresis equipment and add 1xTBE buffer until the agarose gel is submerged

Spot check with $\perp 2 \mu$ of each sample

Mix $\perp \!\!\! \perp 1 \, \mu L$ of loading dye to $\perp \!\!\! \perp 2 \, \mu L$ of each sample and load the gel. (If Green

Tag buffer with built in loading dye was used, skip this step).

Load Δ 5 μ L of 100bp ladder into the agarose gel.

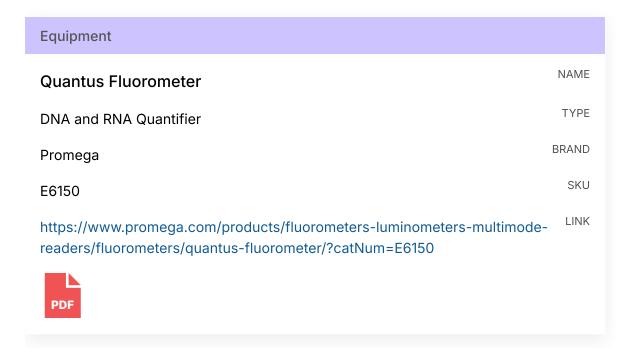
Turn on the electrode and let the DNA run until the band is identifiable

Barcoding PCR

3

- A barcoding PCR was run to attach barcodes from the 96-barcode kit for the MinION to each sample
- We did not use special PCR mastermix at this stage, using instead a mix similar to that of the PCRs above
- We used \$\mathbb{\perp}\$ 1 \mu L of each barcode primer and \$\mathbb{\perp}\$ 2 \mu L of every postive PCR amplicon in a total volume of 25 uL

We ran the PCR at the following conditions:


- Initil denaturation of hotstart taq at \$\\$\\$\\$\$ 95 °C for (5) 00:02:00
- Denaturation at **\$** 95 °C for **(*)** 00:00:30
- Annealing at **\$** 62 °C for **(**) 00:00:30
- Extension at **3** 72 °C for **6** 00:00:45
- Total number of cycles 18
- Final Extension at # 72 °C for (00:05:00

Quantification

4

Equipment

- dsDNA dye
- Qubit Assay Tubes
- Your DNA sample

Pulse vortex your sample and spin down.

Add $\perp 200 \mu$ of dsDNA dye into the qubit assay tube.

Make sure to cover up the tube from light

Transfer 🚨 1 μL of DNA sample into qubit assay tube

Pulse vortex and spin down

Let it sit for 00:05:00 in room temperature

Covered from the light

Gently vortex and spindown the sample

Calibrate the Quantus Fluormeter by standard and reference testing.

■ Follow the same process but use \bot 1 \bot L ddH₂O and Lambda DNA.

Insert the qubit assay tube into the Quantus Flurometer

Normalisation and Pooling

- 5 Dilute each sample to 50 nM
 - Mix 5 uL of the sample with calculated amound of ddH₂O (based on DNA concentration above) to make each sample the same concentration of 50 nM
 - Then pool 5 uL of each dilution into a single tube.
 - This is now your library.

SPRI Cleanup

- 6 Run a SPRI cleanup of the library using your choice of bead purification systems/kits in a 1:1 ratio. Resuspend in the same volume.
 - Agencourt Ampure XP Beckman Coulter Catalog #A63880